برنامج مقترح قائم على المدخل التكامي لتنمية مهارات الجرابة الرياضي وتقدير القيمة العملية للرياضيات لدى طلاب المرحلة الثانوية

د/ محمد فخري أحمد العشري
عضو مركز تطوير التعليم الوافدين والأجانب
مشيخة الأزهر الشريف

٢٠٠١٣
Abstract
The Aim of the Study was to Measure the Effectiveness of the Proposed Program Based on the Integrative Approach on Developing the Mathematical Connectios Skills & the Assessment of Practical Value of Mathematics for Sec pupils. The Sample Consisted of Two Groups: 1st Exp (Studied School Unit According to the Proposed Program based on the Integrative Approach). 2nd Cont (Studied the Same School Unit by the Traditional Approach). The Study Utilized an Achievement Test, a Mathematical Connectios Test & a Scale to Assess the Applied Value of Mathematics. The Results showed that the Two Groups were Equal in the Achieving. While Statistically Significant Differences were found in Mathematical Connectios Skills & the Assessment of Applied Value of Mathematics for exp group, there were Also Statistically Significant Differences between the Pre and Post Applications of the Two Groups in the Three Dependent Variables for the Post Applications.
مقدمة:

أصبحت الرياضيات من المواد الحاسمة بالمواقعتها التي لا يضاهيها أي علم من العلوم الأخرى من حيث قوة المنطق، تناسق المحتوى، دقة النتائج، حيث تُعتبر إحدى أهم البنية التحتية الأساسية التي لها الدور الأكبر، والمكانة الأعظم في تطور وتقدم عدد من المجالات والأفرع العلمية، لذا فإن تسع مناهج الرياضيات إلى تحقيق متطلبات الفرد للتوافق مع هذه التطورات، فالميز الرياضي الآن لم يعد يعني كم المعرفة الرياضية التي يمتلكها الطالب بقدر ما يعني قدرته على تكوين واتساع المهارات التطبيقية والرياضية التي تمكنهم من توظيفها في مواقف حياتية ذات صبعة رياضية (العشري، 2015).

وقد أخذ الاهتمام بتطبيق المدخل التكامل في إعداد المقررات الدراسية بمختلف مرافق التعليم يزداد في السنوات الأخيرة، وظهر ذلك وضحاً في الدراسات التربوية والمؤثرات والمشروعات القائمة على مبدأ التكامل، حيث يُعتبر التكامل عامل فعال في ربط الخبرات التعليمية السابقة واللاحقة وجعلها سلسلة متصلة للحفلات (البغدادي، 2004، 29).

وفي مجال الرياضيات المدرسية فإن التكامل المثير للهجة سابقًا لا يعني فقط تكامل الموضوعات داخل فروع الرياضيات، وإنما ينطوي أيضًا التكامل ككل مع النهج المدرسي، وهو ما أشار إليه مينا (1994، 13) عندما ذكر أن المدخل التكاميي يُعتبر جسرًا لربط فروع الرياضيات المختلفة ببعضها البعض، أو لربط فروع الرياضيات بالتطبيقات الحياة في جميع مناطق الحياة، أو بين فروع الرياضيات وبين سائر فروع العلم الأخرى، في ضوء الوضوح الوثيق بين مجالات المعرفة الإنسانية والاعتمادية المتبادلة فيما بينها، وذلك فقد احتل المدخل التكاميي مكانة هامة وبارزة في إدراك البنية الكلية للرياضيات.

وتفق تلك عالميًا مع المبادئ والممارسات التي أصدرها المجلس الوطني لعلمي الرياضيات بأمريكا (NCTM، 2000، 18-17) بصورة توظيف المدخل التكاميي أثناء مواجهة المشكلات الرياضية بحيث لا يُعَالج بشكل سلبي النظرة للعلاقة القوية بين الرياضيات وبين العلم الأخرى سواء كانت علومًا طبيعية، أو اجتماعية، وهو ما يؤكد على إيجابية مبدأ التكامل مع هذه المواد.

وعلى المستوى المحلي فقد أوصى المؤتمر العام لجمعية العلمية المصرية لتربيّة الرياضيات في جلساته الأولى، الثانية، والثالثة بصورة تطور البرامج التعليمية وإعادة صياغتها في قلب معرفة التكامل يتيح الفرصة للمتعلم لربط انتقالة الرياضيات بخبرات الحياة الواقعة (الجمعية المصرية لتربيّة الرياضيات، 2001، 2003، 2004).
ما يسبق يوضح أن الاتجاهات الحديثة في إعداد وتدريس مناهج الرياضيات تدعو إلى تطبيق المدخل التكامللي من خلال ربط فروع الرياضيات بعضها البعض من ناحية وربط مادة الرياضيات عموماً بمايكي المواد الدراسية من ناحية أخرى، بحيث يكون هناك ارتباط منطقي بين وحداتها الدراسية، تساهم تدريسية، تأسس تدريبياً، حيث أن المشكلات الحياتية بطبيعيتها تصبح تجزئتها أو ردصها إلى مجال دراسي أو مجموعة من المجالات الدراسية بصورة مفصلة، لذا فمن الطبيعى تكامل هذه الماهج فيما بينها في محاولة للتصدي لقضايا التعليم من رؤية شاملة.
ولا يخف دور المدخل التكامللى على إدراك البنية الكلية للرياضيات فحسب، بل يلعب أيضاً دوراً أساسياً في إثراء وتنمية تفكير المتعلم، وهو ما أشار إليه مطمور (2014) الذي أكد على أن المدخل التكامللى يبنجق من عدة نظريات تربوية والتي منها نظرية تكامل المعروفة التي تستند على أنظمة التفكير العلمى السليم.
وإضافة إلى أراء خبراء التربية المدعومة بنتائج الدراسات في ذات المجال فإن تنمية مهارات التفكير تعتبر أحد الأبعاد الرئيسية لتطبيق المدخل التكامللى حيث يتوقع تنمية أداء المتعلمين فيما يتعلق بتلك المهارات بعد تعرضهم لأساليب وأنشطة المدخل التكامللى.
ومن مهارات التفكير الهامة والأساسية في الرياضيات مهارات الترابط الرياضي حيث تُعد أحد المفاهيم الرئيسية لضمان تطور Mathematical Connections بنية المتعلمين الرياضية بما يمكنهم من استغلال أقصى طاقاتهم العقلية والتفاعل الإيجابى مع مادة الرياضيات، وذلك من خلال ربط ما لديهم من خبرات رياضية مكتسبة، وبين العملية التي تمكنهم من توظيفها في مواقف حياتية فعلية.
وعالمياً فقد أُطلقت وثيقة مبادئ ومعايير الرياضيات المدرسية أهمية خاصة للترابطات الرياضية، حيث يمثل الترابط الرياضي المعبر عن من عوامل التجربة الرياضيات المدرسية والذي جاء فيه "أن يكون الطلاب قادرون على ربط كافة المهام الرياضية بعضها البعض، وأن يوظفوا أنشطة الرياضيات في العالم الأخرى وفق أحياتهم اليومية" (الموالي، 2009، 12).
وعلى المستوى المحلي فقد أوصت إحدى جلسات المؤتمر العلمى الثامن للجمعية المصرية لتربيه الرياضيات ومواد أخرى تحت عنوان "الرياضيات ومواد أخرى" بضرورة الاهتمام بتنمية مهارات الترابط الرياضي كمداخل في تطوير ماهج الرياضيات (عيد، 2008).

وبالتأمل في الأهداف العامة لتدريس الرياضيات يتضح أن المقصود من وراء تعليم وتعلم الرياضيات لا يقتصر فقط على اكتساب المتعلم للمعارف والمهارات الرياضية التي يمكنهم من اجتياز المادة الدراسية وتحقيق مستويات عالية في تحسينها فحسب، وإنما يجب توفير تلك المعرف والمهارات في حل المشكلات الحياتية. وذلك يجب أن يدرك الطلاب قيمة الدور الذي تلعبه الرياضيات في المجالات المختلفة، وعلاقتها بالتغيرات الاجتماعية والتكنولوجية، وأنها مجال حيوي وخصوصاً في تقديم الأمور واتخاذ الشعوب من هنا تبرز أهمية تدريس القيمة العملية للرياضيات في المجالات المختلفة، وإدراك دورها المتضمني في الحياة العملية على مستوى الفرد والمجتمع. وهو ما يجعل من تدريس القيمة العملية للرياضيات هدفًا أصيلًا وعذرًا أساسياً ومكونًا رئيسيًا من مكونات إعداد وتدريس مناهج الرياضيات.

ومما بسٍ ذكره يرى الباحث أن متغيرات البحث الثلاثة (المدخل التكملي، مهارات الترابط الرياضي، تقييم القيمة عملية للرياضيات) ذات صلة وطيدة ببعضها البعض حيث يؤثر ويتأثر كل منها بالأخر، وذلك نظرًا لما يسمى به المدخل التكملي في تنمية مهارات وعوامل الترابط الرياضي، حيث يعتمد الأول على تكامل المعرفة الذي يهدف إلى إكمال التلاميذ مهارات الرياضية بصورة شاملة تتألف من موضوع واحداً محاوراً لها وتوظف كل فروع الرياضيات المرتبطة به لعرضه وتوضيحه حتى يتسع للمتعلمين الإسلام بالمواقف والخبرات الرياضية بشكل متكامل تساعدهم على بناء شخصية متكاملة، وهو ما يتيح لهم فرصة تكوين الحس الرياضي وإدراك مفاهيم الرياضيات وتبنيها في سياقات عملية وفي مواقف حياتية حقيقية، وهو ما يمثل بعضاً أصيلًا وجذابًا مهماً في تنمية مهارات الترابط الرياضي، التي بدورها تحقق المتغير جميعه على إدراك الدور الأساسي الذي تلعبه الرياضيات في المجالات المختلفة، وفي مواقف الحياة العامة، وهو ما يمثل عالماً جوهرياً لتقديم المتعلم للقيمة العملية للرياضيات.

كما تعدد المرحلة الثانوية من المراحل الدراسية المتوافقة إلى حد كبير لتطبيق البحث الحالي، وذلك نظرًا لما أشار إليه عدنان (2014، 19-22) عن خصائص النمو العقلي لطلاب هذه المرحلة والتي ربما ترتبط ارتباطًا كبيرًا بمتغيرات البحث المذكورة فيما يلي:

1. يصرح الفهم واستنتاج العلاقات من بعضها البعض مما يسهل عليه حفظ القائم على الفهم واستنتاج العلاقات من بعضها البعض مهما نقل عليه حفظ.
المعلومات والحقائق وربطها بغيرها، وكيفية توظيفها وتطبيقها في مواقف حياتية متعددة ويعتقد الباحث أن ذلك يُمكن الطالب من السير والإبحار في محتوى المدخل التكامللي بفاعلية.

2- تنمو القدرات العقلية في هذه المرحلة وتزداد قدرة الطالب على التحليل والتركيب والاستنتاج والاستدلال وحل أي مشكلة تواجهه باستدلال علمي، ويُعتقد الباحث أن المهارات السابقة تمثل العمليات الأساسية لتنمية مهارات الترابط الرياضي.

3- تزداد قرارة انتباه الطالب حيث يستطيع التركيز لفترة أطول في استيعاب مشكلات معقدة وطويلة في سهولة ويسر، ويرى الباحث أن التعرض لهذه المشكلات المقدمة، ومحاولة اقتراح أفضل التصورات والبديلات الرياضية لحلها قد يسهم باعتلال في تقدير القيمة العملية للرياضيات من خلال إدراك دورها حل مشكلات المواقيف الحياتية المختلفة.

وإذا ما سبق فإن هناك أثراً إيجابياً محتملاً من تطبيق المدخل التكامللي في تنمية أداء الطلاب في مهارات الترابط الرياضي، وتقييم القيمة العملية للرياضيات.

مشكلة البحث:

على الرغم من أهمية المدخل التكامللي في إعداد المناهج الدراسية نظراً لنتائج الإيجابية المتوقعة في ربط أي مجالات العلم بصفة عامة والرياضيات بصورة خاصة، فضلاً عن توصيات خبراء التربية ونتائج أغلب الدراسات الميدانية وتوصيات مؤتمرات المناهج بضرورة تطبيقه عند إعداد وتدريس مناهج الرياضيات، إلا أن الملاحظ أن مناهج الرياضيات المدرسية المصرية والوطنية لا تتمكن بكمال فروع الرياضيات ولا ربطها بالمواد الأخرى، وتركز فقط على تنظيم محتواها بصورة مستقلة عن بعضها البعض دون الإشارة إلى أوجه الترابط فيما بينها. ونظراً لأهمية تنمية مهارات الترابط الرياضي لما تمثله من ربط تعلم الرياضيات بتطبيقها...
في تناول المشكلات والمناقشات الملموسة، ولهما دوراً أساسيًا وهمًا في تقييم المعلمين لتصور الطالب العملية للرياضيات، وأهمية الدور الذي تلعبه تجاه العلوم الأخرى، علامة على دورها في حياة الأطراد. وعلى ذلك يسعى البحث الحالي إلى تجربة تطبيق برنامج مقترح قائم على المدخل التكافلي في تنمية مهارات الترابط الرياضي وتقدير القيمة العملية للرياضيات لدى طلاب المرحلة الثانوية وعلى هذا تحدد مشكلة البحث الحالي في الإجابة عن السؤال الرئيس التالي:

ما فاعلية برنامج مقترح قائم على المدخل التكافلي في تنمية مهارات الترابط الرياضي وتقييم القيمة العملية للرياضيات لدى طلاب المرحلة الثانوية؟

وينفرع من السؤال الرئيس السابق الأسئلة الفرعية التالية:

1. ما مهارات الترابط الرياضي التي تتواجد في طبيعة مناهج المرحلة الثانوية؟
2. ما الأبعاد الرئيسية لمقياس تقييم القيمة العملية للرياضيات؟
3. ما صورة برنامج مقترح قائم على المدخل التكافلي في تنمية مهارات الترابط الرياضي وتقييم القيمة العملية للرياضيات لدى طلاب المرحلة الثانوية؟
4. ما فاعلية البرنامج المقترح في تنمية مهارات الترابط الرياضي وتقييم القيمة العملية للرياضيات لدى طلاب المرحلة الثانوية؟

فروع البحث:

أولاً: الفروض المتعلقة بالتحصيل:

1. لا توجد فروض دالة إحصائيًا (عدد مستوي 0.01) بين متوسطي درجات طلاب مجموعتي البحث في التطبيق البديعي لاختبار التحصيل.
2. لا توجد فروض دالة إحصائيًا (عدد مستوي 0.01) بين متوسطي درجات التطبيقين: التقليدي والبديعي لطلاب مجموعتي البحث (كل على حدة) في اختبار التحصيل.

ثانياً: الفروض المتعلقة بمهارات الترابط الرياضي:

1. لا توجد فروض دالة إحصائيًا (عدد مستوي 0.01) بين متوسطي درجات طلاب مجموعتي البحث في التطبيق البديعي لاختبار مهارات الترابط الرياضي.
2. لا توجد فروض دالة إحصائيًا (عدد مستوي 0.01) بين متوسطي درجات التطبيقين: التقليدي والبديعي لطلاب مجموعتي البحث (كل على حدة) في اختبار مهارات الترابط الرياضي.

ثالثًا: الفروض المتعلقة بتقييم القيمة العملية للرياضيات:

1. لا توجد فروض دالة إحصائيًا (عدد مستوي 0.01) بين متوسطي درجات طلاب مجموعتي البحث في التطبيق البديعي لقياس تقييم القيمة العملية للرياضيات.
أهداف البحث: هدف البحث الحالي إلى تحقيق ما يلي:

1- تنمية مهارات التحليل والتدريب الرياضي.
2- قياس فاعلية برنامج مقتراح تم قياسه في تنمية مهارات التحليل والتدريب الرياضي.
3- إعداد البحوث: اقتسمت أدوات البحث إلى ما يلي:

- مادة المعرفة الرياضية: وتمت إعداد البحوث.
- أدوات التحليل: وتمت إعداد البحوث.
- اختبار مهارات التحليل الرياضي.
- مقياس قياس التدريب الرياضي للرياضيات.

شكل (1) مخطط إجراءات تجربة البحث:
حدود البحث: أقتصر البحث الحالي على ما يلي:

الحد الزمني: تم تطبيق التجربة الاستطلاعية للبحث في الفصل الثاني 2016-2017م.

الحد المكاني: أقتصر البحث الحالي على مجموعة من فصول معهد الإسماعيلية الثانوي الأزهرى للبنين التابع لإدارة الإسماعيلية التعليمية، نظراً لكونه جهة عمل سابقة للباحث ولديه الخبرة في توزيع طلابه على مجموعتي البحث.

الحد البشري: أقتصرت عينة البحث الحالي على مجموعتين من طلاب الصف الأول الثانوي (تجريبية- ضابطة). وهي العينة التي أجرى عليها تطبيق التجربة الأساسية للبحث وتحديد النتائج، وذلك في بداية الأسبوع السادس من الفصل الثاني للعام 2017م. وقد سبق التطبيق الأساسي تطبيق استطلاعياً في بداية الأسبوع السادس من الفصل الثاني للعام 2016م، وتضمن عدد (20) طالباً من طلاب الصف الأول الثانوي وذلك بهدف ضبط الأدوات وتحديد زمن تطبيقاتها، الكشف عن أهم معوقات التطبيق الفنية والتنظيمية، والاستفادة منها في تطبيق التجربة الأساسية للبحث وإخراجها في أفضل صورة.

الحد الموضوعي: في الأبعاد التالية:

- حدة المتجهات: المقررة على منهج رياضيات الصف الأول الثانوي ضمن فرع الهندسة التحليلية المقرر دراسها في الأسبوع السادس من الفصل الدراسي الثاني.
- مستويات بلوغ المجال المعرفي: التذكر - الاستيعاب - التطبيق.
- مهارات الترابط الرياضي: تحديد العلاقة بين المعرفة السابقة والمعرفة الجديدة وتوزيعها في حل المشكلات الرياضية الحالية. إدراك التكامل بين فروع الرياضيات- إدراك الترابط بين الرياضيات والعلوم الأخرى- التعرف على التطبيقات الحياتية للرياضيات.

متغيرات البحث: انقسمت متغيرات البحث إلى المتغيرين التاليين:

أ. المتغير المستقل: ويتضمن البرنامج المقترح القائم على المدخل التكامل.
ب. المتغيرات التابعة: ويشتمل على:
- التحصيل- مهارات الترابط الرياضي- تقييم القيمة العملية للرياضيات.
- منهج البحث: لتحقيق أهداف البحث اتبع الباحث المنهجين التاليين:
Integrative Curriculum of Mathematics

1. **Mathematics**: عرفة保護ي probing أَنَّهُ "تنظيم منهج الرياضيات في نمط وظيفي في صورة مفاهيم وعلاقات ومهارات مترابطة بشكل متكمل لتغطي المواصفات_mathematical الواجبات المختلفة من خلال ارتباط وفروع الرياضيات ببعضها البعض، وارتباطها من حيث المعافر بالمناهج الأخرى حيثما أمكن.

2. **Mathematical Connection**: عرفة عبد المجيد (2013، 177) بأنه "تسهق في تكوين روابط التعليم في الدرس الواحد بدروس وفروع الرياضيات الأخرى، وكذلك ربط مجال الرياضيات بالعلوم الأخرى من أجل بناء قيمة عملية للرياضيات في حياة التعليم، ومساعدته على تقويم أمناً المعافرة الرياضية بصورة فعالة.

3. **Mathematical Connection Skills**: عرفة الترابط الرياضي الجديده، وتظيفها في حل المشكلات الرياضية الحالية إدراك الترابط بين فروع الرياضيات - إدراك الترابط بين الرياضيات والعلوم الأخرى - التعرف على التطبيقات الحياتية للرياضيات.

4. **Assessment of Scientific Value of Mathematics**: عرفة الباحث بأنها "رؤية الطالب الذاتية للبنية العملية للرياضيات، ودورها وفائدتها كعلم وكمادة دراسية بالنسبة للفرد، للمجتمع، للعلوم الأخرى".

المجلد (٣) العدد (١) يناير (١) ٢٠٢٠م الجزر الأول

- **المنهج الوصفي**: لإعداد الإطار النظري والدراسات السابقة للبحث.
- **المنهج التجريبي**: لقياس فاعلية البرنامج في تنمية التحصيل، مهارات الترابط الرياضي، وتقييم القيمة العملية للرياضيات.

أهمية البحث: قد يسهم البحث الحالي في تحسين التطبيقات التالية:

1. إعداد برنامج مقترح قائم على المدخل التكامل البيوضوي بروية مقترحة لمراعاة بناء المنهج التكامي وتنفيذه قد تغلب نموذجًا في الشرق في إعادة تنظيم محتوى مناهج الرياضيات المدرسية بصورة متكاملة وتحقيق مزيدًا من التطبيقات الحياتية.
2. إعداد قائمة بمصادر الترابط الرياضي مدعومة بروية مقترحة لكيفية تفعيلها إجراءً، مما يبعث على تطبيق مزيد من الدراسات في طرق وأساليب تطبيقها.
3. توفير أداة موضوعية للمعلمين لقياس تقييم القيمة العملية للرياضيات من خلال المقاييس المقترح التي تم إعدادها في البحث الحالي، مدعومة بروية مقترحة لكيفية دمج القيم العملية للرياضيات في مناهج الرياضيات المدرسية.

مصطلحات البحث:
المجلة العربية للرياضيات – المجلد (12) العدد (1) يناير 2000م الجزء الأول

الإطار النظري:

أولا: المدخل التكامل

المقدمة:

أكدت عدد من المجالس العالمية للرياضيات ومنها: (AAAS), (SSMA) (MSEB) (NCTM) وعلى أهمية التكامل بين مناهج الرياضيات المدرسية وبين فروع المعرفة الأخرى، واهتم (NCTM) بتوضيح عدة حالات توضح التفاعل بين الرياضيات والمواضيع الدراسية الأخرى أو مواقف الحياة الفعلية، حيث أن بناء منهج الرياضيات بمعزل عن المنهج المدرسي قد لا يوافق بنية الرياضيات في بعض الأحيان، وقد لا يوافق الإفتراض البنائية من المتعلمين من ذوي الذكاء المتفوق، لأنهم دون غيرهم قد يستطيعون ربط الرياضيات بغيرها من العلوم والمعارف الأخرى دون الإشارة إليها بشكل صريح في المنهج (الشركاوي، 2004).

مفهوم المدخل التكامي: تعدت التعريفات حول المدخل التكامي، نذكر منها ما يلي:

(1) عرفه أبو حرب (2007، 101) بأنه المنهج الذي يقوم على فكرة تكامل تقدم المعرفة في نمط وظيفي على هيئة أفكار ومفاهيم متتالية تغطي موضوعات مختلفة دون تقسيم المعرفة أو تجزئتها.

كما عرفه الشركوي والطناوي (2010، 255) بأنه المنهج الذي يعتمد في تخطيطه وتنفيذه على إزالة الحواجز التقليدية التي تفصّل بين جوانب المعرفة، مما يتيح للمتعلم اكتساب المفاهيم الأساسية التي توضح له وحدة المعرفة ودورها في حياته اليومية. أيضاً عرفه مصطفى (132، 2003) بأنه المنهج الذي يقدم المعرفة للتعلم بطريقة وظيفية على أساس متدرج ومترابط يغطي الموضوعات المختلفة، ويوضح وحدة المعرفة واتصال أنتمائه في حياة التعلم اليومية بما يؤدي إلى تكامل شخصياتهم دون أن يكون هناك تكرار للموضوعات أو تجزئة للمعرفة إلى ميادين مفصلة.

وعلى ذلك يُعرف البحث المدخل التكامي في الرياضيات بأنه "تنظيم وتدريس منهج الرياضيات في نمط وظيفي على صورة مفاهيم وعلاقات ومهارات رياضية متتالية بشكل متئام تنتفي كافة المواقف الحياتية بما يؤدي إلى تكامل شخصياتهم دون بعضها البعض، وارتباطها من حيث المعالم بالمناهج الأخرى حينما يمكّن.

مستويات المدخل التكامي: ذكرها مطاع ووالحصان (2014، 121-127) فيما يلي:

أ- التكامل الأساسي: وذلك عن طريق إيجاد العلاقة الأفقية بين المجالات المختلفة التي تيكون منها المنهج، حيث يركز الاهتمام على موضوعات ذات عناصر مشتركة. كالربط بين ما يدرس في الرياضيات وما يدرس في العلوم الأخرى.

ب- التكامل الأفقي: أو ما يُسمى البعض بالبناء الحلوزي للمنهج، يعني ببساطة التوجه نحو تمايز العلم في المناهج، واتخاذ مفهوم محوري والأرتباط به عمقاً
وتناولًا في فروع العلم الأخرى، كلما ارتفع الطابع من صف إلى صف أعلى.
1- مجال التكامل: تكامل المواد الدراسية التي تكون منها المنهج، ومن أهم مجالاته:
 1. تكامل على مستوى المادة الدراسية: مثل التكامل بين فروع الرياضيات.
 2. تكامل على مستوى مادتين دراسيتين ينتتميان إلى مجال دراسي واحد: مثل التاريخ والجغرافيا.
 3. تكامل بين جميع المواد الدراسية التي تنتمي إلى مجال واحد: مثل الفيزياء والكيمياء والأحياء.
 4. تكامل بين جميع المجالات الدراسية المقررة على الصف الدراسي الواحد: وهو من أقوى مستويات التكامل جميعها.

ب- شدة التكامل: مدى ترابط مكونات المنهج بعضها ببعض، ويوجد ثلاثة درجات لشدّة التكامل وهي:
1. التناسق: يحدث عندما يكون هناك منهجين دراسيين مختلفين يُدرسان الواحد بعد الآخر، ويتأثران بعضهما البعض، ويكون له هدف واحد.
2. الترابط: يحدث في حالة النظام موضوعات تدور حول محور معين، أو في حالة النظام بعض فصول كتاب ما حول محور رئيس.
3. الدمج: يحدث عندما يتداخل المنهج عدداً كبيراً من المعلومات والحقائق التي تدور حول محور معين ينتسب إلى المواد الدراسية مختلطة.

ج- عمق التكامل: الأبعاد التي تبين درجة عمقه، مثل مدى ارتباط المنهج بكل من:
- أنواع المنهج التكامي:
 - ذكر الشربيني والطناوي (2014، 225-258)، مطاوع والحسان (2014، 131-140) أن المدخل التكامي يستند على عدة أنواع تتمثل أهمها فيما يلي:
2- مدخل الموضوعات التكاملية-Thematic Approach: يعتمد على اختيار الموضوعات الجوهريّة التي يتضمنها المحتوى، ويبحث يكون الموضوع المختار جدًا ومشوقًا للمتعلمين، ويسمح بممارسة مهارات تقع في نطاق اهتماماتهم.
3- مدخل المفاهيم الشاملة-Concepts Approach: يشترط اختيار مفاهيم شاملة وواسعة، بحيث يشمل أيها منها مجموعة من المفاهيم الفرعية، إذا لذا تعلم هذه المفاهيم في صورتها الشاملة والجزئية الحصول على معلومات متكاملة حولها فقط، بل يكون تعلمها أيضاً مهماً للمتعلم في تحقيق عملية التكامل نفسها.
4- مدخل المهام Tasks Approach: يعتمد على اختيار نشاط يميل للمتعلم إلى تعلمه عن طريق الممارسة الفعلية في ظروف واقعية.
إن المدخل الوظيفي: فتح عملية التكامل في المحتوى على أساس علوم المادة العلمية في صورة وبطبيعة، لها صلة وثيقة بالواقع الحيوي للمتعلم، مما يشجعه على ممارسة أساليب حل المشكلات في التعلم.

5- المداخل المهارات: يتم اختيار المهارات الأكثر عمومية لتصاغ حول المحتوى، ويمكن الاعتماد على واحد أو أكثر من المهارات: الدراسية - الاجتماعية.

6- Concepts & Thearoms: يركز هذا المدخل على المشاكل الملمحة الواقعة في حياة التلميذ، والتي يشعر بها، ولديهم أثرها في حياتهم، ويثيرون في البحث عن حلها، سواء كانت مشكلة قائمة فعلاً أو مشكلة مستقبلية. حيث يتم عرض المشكلة في المنهج بشكل يدعو ويشجع على المناقشة والبحث، بحيث يمستخدم الطريقة العلمية في التفكير.

7- Contemporary Problems: منهج مشارك يدعو لبناء المنهج التكاملى وتنفيذها في (جدول 1):

<table>
<thead>
<tr>
<th>رؤية مقترحة لمرحلتين بناء المنهج التكاملى وتنفيذها</th>
</tr>
</thead>
<tbody>
<tr>
<td>المراحل</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>المراحل</th>
<th>ملاحظات</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>الطريق بين المواد المنفصلة من خلال أثبات العلاقة بين موضوعين أو أكثر، ت azt على موضوعات في التاريخ بموضوعات في الجغرافيا.</td>
</tr>
<tr>
<td>2</td>
<td>الطريق بين المواد المنفصلة أو الخبرات الدراسية المتصلة في مجال واحد، كالدراسات الاجتماعية (تاريخ، جغرافيا، رياضيات، والعلوم الاجتماعية (فيزياء، كيمياء، أحياء).</td>
</tr>
<tr>
<td>3</td>
<td>تعليم الطلاب كيفية فهم مادة أثرت أو أكثر، أن يكون معلم اللغة العربية مع معلم التأريخ، وذلك بتكييف الطلبة ككتابة موضوعات في التعبير، ترتيب بين فترات تاريخية معينة.</td>
</tr>
<tr>
<td>4</td>
<td>تدريس موضوعات متابعة في مادة دراسية، فمثلاً تدريس موضوعات في الجغرافيا مع موضوع له علاقة في الفيزياء، أو موضوع دراسي مثل "الطفقات الأرضية".</td>
</tr>
<tr>
<td>5</td>
<td>تدريس موضوعات كثيرة في مبحث جديد، كأن يكون معلم دراسة البيئة من علم الأرض والجيولوجيا والجيولوجيا، أو الميكانيكا أو الكيمياء.</td>
</tr>
</tbody>
</table>

- تتيحนะคะ المدخل التكاملى منهج موحد دائمًا على موضوع دراسي، حيث يدور البحث حول محور رئيسى متعلق من المادة الدراسية ذاتها، ولكنه يعالج ناحية ذات أهمية في حياة الطلاب، ولا يقتصر بتنظيم الحفاظ والمعلومات التي تدرس تنظيمًا منطقيًا، كما أنه لا ينقسم بالحدود القاسية بين فروع المادة، أو بين المادة والمواد الدراسية الأخرى.
Mathematical Connections

Mathematical Connections

By NCTM (2000), the mathematical connections are described as:

1. Relating the topics of the curriculum to the real world.
2. Connecting the different representations of mathematical ideas.
3. Making connections to other subjects.
4. Identifying commonalities and differences among mathematical ideas.
5. Relating the mathematical ideas to the students' experiences.
6. Using mathematical ideas to model and solve problems.

Examples of Mathematical Connections

- Relating the topics of the curriculum to the real world.
- Connecting the different representations of mathematical ideas.
- Making connections to other subjects.
- Identifying commonalities and differences among mathematical ideas.
- Relating the mathematical ideas to the students' experiences.
- Using mathematical ideas to model and solve problems.

NCTM (National Council of Teachers of Mathematics)

- The NCTM is a professional organization for mathematics teachers.
- It provides resources and support for mathematics education.
- Its goal is to improve the quality of mathematics teaching and learning.
الإجراء أو الفكرة الرياضية بمفهوم وتعنيات وإجراءات وأفكار رياضية أخرى بما يؤدي إلى رؤية الرياضيات كبناء متزامن متكامل من المعارف الرياضية ورؤيته لمنافعة الرياضيات في الحياة.

ويقسم عصر (09-2001) مفهوم الترابط الرياضي إلى القسمين الأولين: "ذات الكثافة والتداخل بين المفاهيم داخل المجال الواحد وبين المجالات المتعددة، وإدراك الترابط بين المفاهيم الرئيسية والفرعية، وثانيهما: "ربط العمليات والإجراءات الرياضية بالمواضيع الحياتية، وتوظيف العمليات الرياضية في مجالات الرياضيات المختلفة، مع إدراك الترابط بين المعرفة المفاهيمية والإجرائية".

وعرف الترابط الرياضي بأنه "ربط بين المعرفة الحالية والسابقة، بهدف تعزيز العلاقة بين المبادئ الرياضية، وكذلك بين مجالات المحتوى الرياضي". يضيف الرويس (2011)("R"1) بأن الترابط الرياضي "ربط الأفكار الجديدة بالسابقة، وربط خبرات الطلاب اللاحقة بما لديهم من خبرات سابقة، وكذلك ربط الموضوعات الرياضية بعضها البعض في صفي محدد وبين الصفوف المختلفة، وربط الرياضيات بالعلوم الأخرى.

وأما ما سبق يُعرف الباحث الترابط الرياضي بأنه "ربط بين الخبرات الرياضية الحالية والسابقة عند المتعلمين، وتقييمه كنصالح متزامن ومتؤال، يبرز العلاقة بين منهج الرياضيات والمواد الأخرى من جانب، وبين منهج الرياضيات وأنشطة الحياة اليومية للمتلعين من جانب آخر.

مهام الترابط الرياضي:

1. التعرف على الروابط بين الأفكار الرياضية واستخدامها:

 حيث تظهر أهمية الخبرة السابقة في تحديد مدى اكتساب المتعلمين للمعلومات السابقة المهمة لتعلم الموضوع الجديد، ويساعد تحديد الخبرات المطالعة في تصحيح الفجوة بين ما يعرفه المتعلم وما يحتاج لمعرفته قبل البدء بالتعلم الجديد. ويتطلب ذلك حسب ماورد في وثيقة (NCTM, 2000) ما يلي:

 - استخدام الترابطات الرياضية لحل المشكلات.
 - ظهور وربط (10-2007) أن الترابطات الرياضية يمكن أن تتم من خلال عرض المنهج للطلاب أو معالج؛ يتطلب هذين الربط بين فروع الرياضيات المختلفة، ويزيد البناء الرياضي الموحد.

227
وتم ذلك من خلال ربط المعنى الرياضي (مفاهيم ومهارات وعلاقات وخبرات)، بحيث لا يحدث عزلًا ولا انفصالًا بين العمل الحسابي والقياس والنشاط الجبري والهندسي؛ بل يكون كلاً متكاملاً يكمل بعضه البعض، ولا يمكن لكل درس هوافًا يبدو منفصلاً عن هدف الدروس التالي، بل تنساب الأفكار الرياضية بطريقة طبيعية عبر الدروس الموضوعات (عيد، 2004، 47).

وتطلب ذلك أن يدرك المتعلمون العلاقات التالية:

أ- رؤية النفس الترميز الرياضي في أوضاع مختلفة ظاهريًا:

أكد (NCTM, 2000، 65) أن ضرورة أن تكون تدريس الرياضيات في أوضاع تبدو مختلفة ظاهريًا أثناء تقدمهم في المراحل الدراسية المنتظمة. فيمكن مثلًا عرض النسب التناسبية كحل خاصة من المعادلات الخطية، واستخدام خط الأعداد في عرض مفاهيم القسمة المطلقة، واستخدام هذا المفهوم لإيجاد المسافة بين نقطتين على خط الأعداد كمقدمة لإيجاد المسافة بين نقطتين في حالة نظام الإحداثيات، واستخدام خط الأعداد لإيجاد سلسلة من الن태سية، وعلى ذلك فإن عرض الموضوع الرياضي يجب أن يستند إلى الخبرات السابقة للمتعلمين ويمهد لخبرات لاحقة عبر الصفوف المتتالية. ب- التكامل بين الإجادات والمفاهيم:

يُعرف (Ault, 2006، 51) الاستيعاب المفاهيمي بأنه "القدرة على التمييز بين الأمثلة واللامثلة للمفهوم، واستخدام التمثيلات المتعددة للمفهوم، والمقارنة والمطابقة)
المجلة العربية للرياضيات - المجلد (33) - عدد (1) يناير 2007

التعرف على الرياضيات واستخداماتها في سياق خارج الرياضيات:

ذكر ديكغراف (2008, 97) أن الرياضيات المدرسية يجب أن تتضمن أمثلة حول تطبيقات رياضية في مجالات عديدة، وترتبط بالأدوات الدراسية الأخرى وترتبط بالحياة اليومية للمتعلمين، وهناك العديد من العلوم الرياضية التي ترتبط بالعلوم والمجالات الأخرى، ومنها الرياضيات العربية، ومنها الرياضيات الحديثة، ومنها دراسة النماذج الرياضية للدراسات، وتوصيل التأثير في الخلايا العصبية، وتوزيع الأدوات أو أباجا في علوم الإنسان، والهندسة الرياضية الرياضية، التي تشمل تصميم الأجهزة الطبية، مثل أجهزة القلب والأطراف الصناعية وأجهزة التصوير بالأشعة المقطعية، وعلم النبات الرياضي، ويبحث في مشاكل نمو الخلايا ونمو النباتات وأشكالها، وامتساحها للأغذية (العوسي، 2007, 4). كما قدّم دعيسي (2009, 1137) مثالاً على لعبة كرة القدم، حيث إن الكرة أحلازها لا تسير في خط مستقيم، بل توقف في الهواء ولا تصل إلى هدفها، وهي ظاهرة دراسة علماء الرياضيات، واستمرت في البحث عن أفضل الأشكال الرياضية التي تجعل الكرة قابلة للحركة بطريقة أفضل، وتوصوا إلى أن الشكل الخماسي تقطع الجلد المكونة لسطح الكرة يقل من تأثر احتكاك بالهواء.

وذكر أثار الحمادي (2019, 219, 220) أن عملية الترابط الرياضي تتضمن العديد من المهارات يمكن إيضاحها من خلال المآخذات التالية:

1. إدراك العلاقات بين البيانات والمعلومات المقدمة.
2. إدراك العلاقات بين المفاهيم الرياضية.
3. تكوين العلاقات الجديدة بين البيانات والمعلومات والمفاهيم الرياضية.
4. إدراك العلاقات بين المعرفة المفاهيمية والمفاهيم الإنجازية وحل المشكلات.
5. إدراك العلاقة بين المحتويات العلمية والظواهر المجتمعية.
6. إدراك العلاقة بين المحتوى الرياضي والحياة خارج التطبيقات الرياضية.
7. تكوين علاقات علمية ورياضية جديدة خلال حل المشكلات.
8. إدراك الترابط بين المفاهيم الرياضية والحياة داخل المجتمع.
9. إدراك العلاقة بين ما يتعلمه وما يواجهه من مشاكل خاصة وعامة.

وإدراك العلاقة بين ما يتعلمه وما يواجهه من مشاكل خاصة وعامة وعامة واستناداً إلى ما سبق وضع الباحث تصويراً مقتراحاً لمهارات الترابط الرياضي الرئيسية متضمنة الموارد الفرعية المبنية منها، وكيفية تنظيم ومعالجة محتوى المنهج، فضلاً عن الدور المنطوي بالتعلم والمتعلم، كما في جدول (2، 3):
جدول (2) قائمة مهارات الترابط الرياضي المفترضة

<table>
<thead>
<tr>
<th>مهارات الترابط الرياضي الرئيسية</th>
<th>م</th>
</tr>
</thead>
<tbody>
<tr>
<td>تحديد العلاقة بين المعرفة السابقة.</td>
<td>1</td>
</tr>
<tr>
<td>التطور على الاتصالات السابقة.</td>
<td></td>
</tr>
<tr>
<td>حل المشكلات الحالية من خلال المعلومات السابقة.</td>
<td></td>
</tr>
<tr>
<td>إدراك التكامل بين فروع الرياضيات بشكل متاح.</td>
<td>2</td>
</tr>
<tr>
<td>ارتباط الرياضيات ب: بالمجالات العلمية، التخطيطية، الرياضية، الفنية، الدينية، الاجتماعية... الخ الأخرى</td>
<td>3</td>
</tr>
<tr>
<td>تطبيقات الرياضيات في الحياة.</td>
<td>4</td>
</tr>
<tr>
<td>تطبيقات الرياضيات في حل المشكلات.</td>
<td></td>
</tr>
</tbody>
</table>

جدول (3) منظومة تفعيل مهارات الترابط الرياضي

<table>
<thead>
<tr>
<th>دور المعلم</th>
<th>دور المتعلم</th>
<th>مهارة</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. وضع الأهداف العامة على أنها استدامة للاستراتيجية.</td>
<td>1. تحديد العلاقة بين المعرفة السابقة.</td>
<td></td>
</tr>
<tr>
<td>2. إعداد الخبرات السابقة المرتبطة بموضوع الرياضيات.</td>
<td>2. تحديد العلاقة بين المعرفة السابقة.</td>
<td></td>
</tr>
<tr>
<td>3. فحص الخبرات السابقة المتصلة بالموضوع المثير للإلهام.</td>
<td>3. تحديد العلاقة بين المعرفة السابقة.</td>
<td></td>
</tr>
<tr>
<td>4. وضع الأهداف العامة على أنها استدامة للاستراتيجية.</td>
<td>4. تحديد العلاقة بين المعرفة السابقة.</td>
<td></td>
</tr>
<tr>
<td>5. وضع الأهداف العامة على أنها استدامة للاستراتيجية.</td>
<td>5. وضع الأهداف العامة على أنها استدامة للاستراتيجية.</td>
<td></td>
</tr>
</tbody>
</table>

الملاحظات:
- دعم المحتوى بالأنشطة التفاعلية: تعريف الأماكن المتداخلة وتعليمهما في الفضاء.
- استخدام المناهج المتاحة للمستويات المختلفة في الفضاء.
- تعزيز العمل على المفاهيم الرياضية من خلال التمثيل والتطبيق.
- تطبيقات الرياضيات في حل المشكلات الحالية.
تأثير القيمه العملية للرياضيات

مقدمة:
تعتبر الرياضيات إحدى أهم البنى التحتية الأساسية التي ساعدت الإنسان على التقدم في العديد من المجالات، وكان لها الدور الأكبر في تطور العديد من الأفرع العلمية، كعلوم الحاسب الآلي، العلوم التطبيقية، الطبيعة، والفيزياء، والأحياء، ووسائل الاتصالات، والبيئة، وغيرها في العديد من المجالات التي ترتبط بهذا العلم ارتابات تامة، ولا توقف دور الرياضيات على المجالات العلمية، والتطبيقية فقط، بل يفوق ذلك ليصل إلى مجالات الحياة الاجتماعية، ومن خلالها غرف الإنسان وحياتها، معنىً، ومحوراً، وما لا يمكن، ووضعت له المقاييس، والزمان، والأعمال، وقياس الأطوال، وحساب المساحات، وتقدير الحجم، وغيرها؛ وذلك فإن الرياضيات أهمية كبيرة في الحياة اليومية. ومن هنا استوحيت الدول الكبيرة مدى أهمية الرياضيات وضرورة ارتباطها بها، حيث أنهت بأنها لغة التكنولوجيا الحديثة، وهي الجزء المشترك بين جميع النجاحات والاستثمارات الهامة، وليس غريباً أن نجد دولة بحجم الولايات المتحدة الأمريكية تولي الرياضيات أهمية خاصة، حيث طوروا محتواها، وطرق تدريسها، واساليب تدريسها، وغيرها، وكان ذلك في عام 1957م، عندما تفتقد بإبتسامة الإتحاد السوفيتي للفقرة السوفيتية "سبرينك"، إبرازاً منهم أن الرياضيات هي نواة التطور، ومحور التقدم والإزدهار، ولم يقتصر تطور هذا العلم على الجهود الأمريكية فقط، بل وصل إلى جميع دول العالم؛ من أجل إنشاء أجواء قادرة على مواجهة الصعوبات على مستوى العالم؛ إذ يقال مدى تقدم الشعوب من خلال تنميتهم التعليمي عموماً وارتقاءها بالرياضيات خصوصاً.

ومن هذا المنطلق فإن اقتراض مناهج الرياضيات على المعرفة الرياضية دون إبراز

تأثير القيمه العملية للرياضيات

<table>
<thead>
<tr>
<th>تأثير القيمه العملية للرياضيات</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. تأثير القيمه العملية للرياضيات في حالي الحياة الاجتماعية من خلال اكتساب مهارات التفكير والبديهية التي يمكن استخدامها في مواقف الحياة بشكل جذري.</td>
</tr>
<tr>
<td>2. تأثير القيمه العملية للرياضيات في حالي الحياة الاجتماعية من خلال اكتساب مهارات التفكير والبديهية التي يمكن استخدامها في مواقف الحياة بشكل جذري.</td>
</tr>
<tr>
<td>3. تأثير القيمه العملية للرياضيات في حالي الحياة الاجتماعية من خلال اكتساب مهارات التفكير والبديهية التي يمكن استخدامها في مواقف الحياة بشكل جذري.</td>
</tr>
<tr>
<td>4. تأثير القيمه العملية للرياضيات في حالي الحياة الاجتماعية من خلال اكتساب مهارات التفكير والبديهية التي يمكن استخدامها في مواقف الحياة بشكل جذري.</td>
</tr>
</tbody>
</table>
القيم العملية قد لا يفي بتحقيق إلا الجانبين المعرفي واللفاحرسي من الأهداف، ولكنه قد يغفل عن استيفاء عدد أساسي ورئيسي من أهدافها وهو الجانب الوجودي بكل مكوناته، وعلى ذلك فإن الاهتمام بإبراز القائمة العملية للرياضيات، والتقديم العلمي الذي يكمن أن تسهم به في جميع المجالات، علواً على دورها في حياة الأفراد أصبح من المحددات الضرورية، والمعايير الهامة التي تقيم جودة الرياضيات، وتعزيز القيم المرغوبة، وتموّلها (Bishop & et al., 2000).
وتؤدي القائمة العملية للرياضيات دوراً حيوياً في تطوير مناهجها (Fitzsimons & Searh, 2001) وذلك لأن لها دوراً مهماً في اكتساب الطلاب الوعي الشخصي. وهذا الجانب من القيم يظهر بشكل خاص في دروس الرياضيات، بحيث أن القيم تؤثر على اختيارات الطلاب نحو الثقافة الرياضيات من عدمها حول دلالة الرياضيات (Fitzsimons & Searh, 2001).
وينظر التربويون للقيمة على أنها فكرتنا عن أهمية الشيء، وتعرف القيمة أيضاً بأنها إدراك معرفي وإدراك نفسية تنبؤ في ممارسات، وصعوبة ثابتة ومتايدة موضوعية تحكمها تعاليم ملزمة، وتوضيحها تطبيقات متضمنة، وترسختها تقابلية متداخلة، دون التجرد من فعل الذات (الجريءي, 2001, 146). وتُعرف القيم كذلك بأنها معيار أخلاقي ووجودية، تستند إلى مرجعية حضارية، تمكن صاحبها من الاختيار بإبراز حرة واعية، و بصورة متكررة نشاطاً إنسانياً، ينبع فيه الفكر والفعل الفاعل، يرجعه على ما عده من أنشطة بديعة متحدة في سطر فيه، ويسعده، ويحتفل فيه ومن أجله أكثر من مما يجعله في غيره، دون انتظار لمنفعة ذاتية (الصمعي, 2008).
وكم تُعرف قيم الرياضيات على أنها تلك المعايير والممارسات المصاحبة لتعليم الرياضيات داخل الصف الدراسي، والتي يشار إليها من خلال معلم الرياضيات أو متحوى الكتاب المدرسي، وتعكس طبيعة النظام الرياضي من حيث المنطقي والعقلانية والاستدلالية (Dade, 2006).
وكم حدّد (Seah & Bishop, 2000)

1. وجهة النظر الشكلية الشكلية (التلفيقية) مقابل وجهة النظر الفعلية: وتشير وجهة النظر الشكلية إلى التعليم الاستدلال، بينما وجهة النظر الفعلية تشير إلى التعليم الحاسبي، أي الجوانب الاستراتيجية.
2. الفهم/التعلم الأمامي مقابل الفهم/التعلم العملي: فالتعلم الأمامي يشير إلى تعلم القواعد والعمليات والتركيب والتطبيقات الرياضية، والتعلم العملي يشير إلى وضوح العلاقات بين المفاهيم.
3. العملية مقابل النظرية: تشير القيمة العملية إلى أهمية الأساس الرياضي في التطبيقات اليومية، أما القيمة النظرية فتشير إلى الأساس النظري فحسب.
4- العام مقابل الخاص: وهذه القيم تشير إلى النشاطات الرياضية الموجهة لكل واحد، وذلك خاصة بفئة المؤهليين.
5- التقييم مقابل التفكير: وتعلق هذه القيم بإدراك خطوات المعرفة، وتطبيق العمليات الروتينية، مقابل البحث عن حل المشكلة، والتفكير وال التواصل لحلها.

أنواع القيم الرياضية:

- أشار (Yuksel, 2006, 87 - 88) إلى أن تصنيف القيم التي تدرس في دروس الرياضيات إلى ثلاث فئات مختلفة لوضوح فيما يلي:
 1) القيم التربوية العامة: القيم التي تساعدها المعلمين، المتعلمين، المدرسة، الثقافة، المجتمع على الرقي والتقدم، وهي تحتوي عموماً على القيم الأخلاقية مثل: السلوك السليم، النزاهة، الطاقة، التواصل.
 2) القيم الرياضية: القيم التي وضعها الرياضيين الذين نشأوا في الثقافات المختلفة، ففياتهم لنفسية فيثاغورث بثلاثة طرق مختلفة، يُعتبر مثالاً على القيم الرياضية.
 3) القيم التعليمية: ذكر (Soner, 2005, 1) بعض القيم التعليمية للرياضيات مثل: الدقة، الوضوح، الحدس، الإتقان أو التماسك، الإبداع، التنظيم الفعال، النزاهة، الثبات، كما أن هذه القيم موجودة ضمنياً وليس صراحة، حيث أن المعلمين أنفسهم هم من يقومون بفرض هذه القيم لدى المتعلمين.

كما صنف كل من (Sam & Emest, 1997) القيم الرياضية إلى ثلاثة مجالات:
 1) القيم المعرفية (العقلانية والموضوعية): وتشمل قيم الدقة، التنظيمية، العقلانية، التدريب، واكتساب المعرفة الرياضية، ويشير (Bishop & et al, 2000) إلى أن قيم العقلانية تعني أن تقوم الرياضيات على الأفكار السالبة على البرهان والمنطق.
 2) القيم الثقافية والمجتمعية: وتتضمن درو تربية الرياضيات في المجتمع.
 3) القيم الشخصية: وتتضمن حب الاستطلاع، الحرص، الصبر، الثقة، والإبداع.

واستناداً إلى ما بقي وضعت الباحث تصويراً مترجماً للأساليب الرئيسية للقيم العملية للرياضيات مدعومة برؤيا متبرئة لمراحل دمجها في مناهج الرياضيات المدرسية كما هو موضح في جدول (4).

مجلة تربية الرياضيات - المجلد (13) العدد (1) يناير 2000م الجزء الأول

333
جدول (5) رؤية مقترحة لمرحل ماج قيم الرياضيات في مراحل الرياضيات المدرسية

<table>
<thead>
<tr>
<th>المرحلة</th>
<th>خطوات التنفيذ</th>
<th>الاقتراحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>الأولى</td>
<td>1. اقتراح قائمة قيم الرياضيات المُستهدَّف إحساسًا بالمتعلمين.</td>
<td>1. تحليل محتوى مسجى الرياضيات لتجاوز المواقف العملية المرتبطة بتكرار قيم الرياضيات.</td>
</tr>
<tr>
<td></td>
<td>2. إعداد مصفوفة المفاهيم العملية التي تشكل القاعد الرياضية تتكون القيم المذكورة.</td>
<td>2. تحديد المفاهيم الأساسية التي تجهت إلى المفاهيم المدرسية لكل مرحلة تعليمية وتقييمها بأشكال تفاعلي.</td>
</tr>
<tr>
<td></td>
<td>3. تنظيم مصفوفة المفاهيم المذكورة حسب تسلسل المفاهيم الرياضية بشكل عملي.</td>
<td>3. عدد ورؤية عمل تطبيق المنهج لتشجيع هذا الخطط والبدء في التنفيذ بشكل متماسك.</td>
</tr>
<tr>
<td></td>
<td>4. تحديد العلاقات بين هذه المفاهيم على المستوى العمدي في إطار شبكة المفاهيم العملية قيم الرياضيات.</td>
<td>4. إعداد دليل علمي تربوي يوضح المنهج المرتبطة بهذا القيم، ودور كل من المعلم والمتعلم في تنفيذها.</td>
</tr>
</tbody>
</table>

إجراءات البحث: سار البحث وفقًا للمراحل التالية:

المرحلة الأولى: تحديد الأبعاد الرئيسية لمكونات البرنامج المقترح: كما يلي:
أولا: إعداد قائمة مهارات الترابط الرياضي: وفق الخطوات التالية:

١) تحديد الهدف من إعداد القائمة: المتمثل فيما يلي:
 • تحديد الأبعاد والمهارات الرئيسية للترابط الرياضي المراد إكسابها للطلاب.
 • توزيع مهارات الترابط الرياضي على موضوعات وأنشطة الوحدة التكاملية.
 • تحديد الأبعاد الرئيسية المتميزة في اختبار مهارات الترابط الرياضي.
 عرض وتحليل الكتب والدراسات السابقة، ومواقع شبكة الإنترنت التي اهتمت
 بتنمية مهارات الترابط الرياضي، للتعرف على أبعاده ومهاراته.
 • صياغة فقرات القائمة في الصورة الأولية.
 • التحقق من ثبات القائمة: تم إعداد القائمة مرتين متتاليتين يفصل بينهما حوالي
 أسبوعين، وحساب ثبات القائمة باستخدام معادلة هلستي جاية قيمة معامل
 الثبات (%) = 78، وهي قيمة مناسبة للثبات.
 • التحقق من صدق القائمة: تم استخدام أراء قائمة المحكزين (ملحق ١).
 • إعداد القائمة في الصورة النهائية (ملحق ٢)، حيث تضمنت المهارات الأربعة
 التالية: تحديد العلاقة بين المعرفة السابقة والمعرفة الحالية، إدراك التكامل بين
 فروع الرياضيات، إدراك الروابط بين الرياضيات والعلوم الأخرى، التعرف على
 التطبيقات الحياتية للرياضية.

ثانيا: إعداد قائمة القيمة العملية للرياضيات: وفق الخطوات التالية:

١) تحديد الهدف من إعداد القائمة: المتمثل فيما يلي:
 • تحديد الأبعاد الرئيسية للقيمة العملية للرياضيات المراد قياس تقديرها
 لدى الطلاب.
 • توزيع الأبعاد الرئيسية للقيمة العملية للرياضيات على موضوعات
 الوحدة التكاملية.
 • تحديد الأبعاد الرئيسية لمقياس تقدير القيمة العملية للرياضيات.
 عرض وتحليل الكتب والدراسات السابقة، ومواقع شبكة الإنترنت التي اهتمت
 ب психологي القيمة العملية للرياضيات، للتعرف على أبعادها، وعنصرها.
 • صياغة فقرات القائمة في الصورة الأولية.
 • التحقق من ثبات القائمة: تم إعداد القائمة مرتين متتاليتين يفصل بينهما حوالي
 أسبوعين، وحساب ثبات القائمة باستخدام معادلة هلستي جاية قيمة معامل
 الثبات (%) = 8٥، وهي قيمة عالية مناسبة للثبات.
 • التحقق من صدق القائمة: تم استخدام أراء قائمة المحكزين (ملحق ١).
 • إعداد القائمة في الصورة النهائية (ملحق ٢)، حيث تضمنت الأبعاد الثلاثة التالية:
 • القيم العقلية - القيم الحياتية - القيم التطبيقية - القيم الجمالية.
ثالث: إعداد المحتوى الرياضي للبرنامج المقترح: وفق الخطوات التالية:

الخطوة الأولى: بناء وحدة رياضية تكاملية: كما يلي:

1) تحديد الهدف من بناء الوحدة التكاملية: إعداد محتوى رياضي يضم إجراء الطالب لأنشطة وتطبيقات رياضية بما يضمن تحقيق أهداف البرنامج المقترح.

2) اختيار وحدة مدرسية تتلاءم مع طبيعة وأهداف البرنامج المقترح: بعد الإطلاع على محتويات الرياضيات المرحلة الثانوية وقتم اختيار البحث على وحدة "المتجهات" المقررة في الأسبوع السادس من الفصل الثاني بمنهج هندسة الصف الأول الثانوي وذلك للأسباب التالية:

- تتطلب الجوانب المعرفية المضمونة في هذه الوحدة تطبيقات متنوعة للمفاهيم والعلاقات الرياضية التي تم دراستها سابقاً، كما أن أغلب المهارات الرياضية المتضمنة بها تعتبر مطلوبة سابقة للوحدات الهندسية في الصفوف الأعلى.
- تتضمن أغلب تطبيقات الوحدة أنشطة تطبيقية مرتبطة بالمواضيع الحياتية للطالب سواء في مجال الرياضيات، أو المواد الأخرى.
- ترتبط الوحدة بأغلب فروع الرياضيات والمواد الأخرى حيث تطلب المفاهيم والعلاقات والمهارات والأنشطة المتضمنة في الوحدة استخدام قوانين الجبر والهندسة المستوية وحساب المثلثات و والفاضل، والاستدراك، فضلاً عن تطبيقاتها في مجال الفيزياء.

تعد أولى أصعب وحدات منهج الهندسة لطلاب الصف الأول الثانوي نظراً لكثرة علاقتها وشموليتها وصعوبة تمارينها، وهو ما دفع الباحث إلى تجربة تدريسها من خلال البرنامج المقترح للتحقق من فاعليته في التدريس.

3) تحديد المحتوى المعرفي للوحدة المدرسية (المتجهات) وفق الإجراءات التالية:

- تحديد الهدف من التحليل: المتمثل في تحديد الأهداف العامة والإجراائية لوحدة "المتجهات". بالإضافة إلى توزيع جوانب التعلم المعرفية المختلفة على دروس الوحدة وما قد يقتضيه ذلك من إعادة توزيع دروسها وترتيب محتواها، بما يناسب وإعدادها في ضوء البرنامج المقترح، فضلاً عن تحديد الوزن النسبي للاختبار التحصيلي.

- إعداد قائمة التحليل في الصورة الأولية.

- التحقق من ثبات التحليل: تم إعداد قائمة التحليل مرتين متتاليتين يفصل بينهما حوالي أسبوعين، وحسب ثبات القائمة باستخدام معامل سكوت جاءت قيمة معامل الثبات = (0.81) وهي قيمة عالية مناسبة للثبات.

- التحقق من صدق التحليل: تم استطلاع آراء قادرين المحكمين (ملحق 1).
الجودول (1) قائمة توزيع مهارات التكامل الرياضي على محدودة الوحدة التكمالية (كتاب الطالب)

الجودول (2) قائمة توزيع مهارات التكامل الرياضي على محدودة الوحدة التكمالية (كتاب المحكيم)

التجربة الاستطلاعية للوحدة التكمالية: تم تطبيق موضوعات الوحدة على عينة اقتصادية من طلاب الصف الأول الثانوي في بداية الأسبوع السادس من الفصل الثاني للعام الدراسي 16-17م وعددهم 12 طالب، وذلك بهدف الكشف عن مدى إمكانية تطبيقها، ورصد أبرز المعوقات وتقدير زمن التطبيق.

الخطوة الثانية: بناء كرساء التدريبات والأنشطة: وفق الخطوات التالية:

1) تحديد الهدف من الكرسة: تدريب الطلاب على إجراء التمارين والتطبيقات الرياضية التي تشمل على تحقيق أهداف الوحدة التكمالية وفق البرنامج المقترح للمدخلي التكامي.
2) تقسيم الكرسة إلى بطاقات: حيث تحتوي كل بطاقة على النشاط المراد إجراه، الهدف منه، إرشادات التطبيق، والوقت المتوقع للتنفيذ.
صياغة أنشطة الكراسة في الصورة الأولىية: حيث توزيع مهارات الترابط الرياضي على أنشطة الكراسة بنفس ترتيب ورودها في أنشطة الوحدة التكامليّة.

التجربة الإستثنائية لكراسة: تم تطبيق الكراسة على نفس العينة الاستطلاعية التي درست الوحدة التكميلية، وذلك بهدف الكشف عن مدى إمكانية تطبيقها، ورصد أبرز المعوقات، وتقييم زمن التطبيق.

التحقق من صدق الكراسة: تم استطلاع أراء قائمة المحكمين (ملحق 1).

وضع الكراسة في الصورة النهائية (ملحق 7).

الخطوة الثالثة: بناء دليل المعلم: وفق الخطوات التالية:

1) تحديد الهدف من الدليل: ضمان تدريس المعلم لأنشطة ومواد الوحدة التكميلية بكل أبعادها بشكل صحيح بما يحقق أهداف البرنامج المقررة.

2) إعداد مكونات الدليل: حيث تكون الكتيب: فلسفة الوحدة التكميلية - الأهداف الإجرائية، أهمية الوحدة - الوسائل التعليمية، مقتراحات للإبحار في الموضوعات، أساليب التقويم.

التحقق من صدق الدليل: تم استطلاع أراء قائمة المحكمين (ملحق 1).

توجه المعلم في الصورة النهائية (ملحق 8).

المرحلة الثانية: إعداد الاختبار التحصيلي: وفق الخطوات التالية:

1) تحديد الهدف من الاختبار: قياس تحصيل طلاب المرحلة الثانوية في الوحدة التكميلية (المنهجيات) كمتيغر تابع لأثر تدريس تلك الوحدة وفق البرنامج المقرّر للمدخل التكميلي.

2) تحديد المستويات المعرفية للإختبار: بالأستعانة بقائمة تحليل وحدة المتجهات المُعدة في الخطوة الأولى (ملحق 4) ثم تحديد مستويات: التذكر - الفهم - التطبيق.

3) إعداد جدول وظائف الإختبار: بالأستعانة بقائمة تحليل وحدة المتجهات المُعدة في الخطوة الأولى (ملحق 4) تضمن الاختبار: 7 مفردات تم توزيعها على مستويات: التذكر - الفهم - التطبيق، كما هي موضحة في جدول 7:

<table>
<thead>
<tr>
<th>جدول 7</th>
<th>جدول التحديد المكي لمفردات الاختبار التحصيلي</th>
</tr>
</thead>
<tbody>
<tr>
<td>المستوى المعرفي</td>
<td>الوزن الكمي</td>
</tr>
<tr>
<td>المعرفية النسبية</td>
<td>عد مفردات</td>
</tr>
</tbody>
</table>

4) صياغة مفردات الاختبار: بأسلوب نغوي واضح وملائم لمستوى الطلاب.

5) صياغة مفردات الاختبار في الصورة الأولية: تم صياغة (7) مفردات أكمل (4) مفردات اختيار من متعدد، (17) مفردة مقالية وروعيت شروط الصياغة الجيدة.
محاسب مهارات الترابط الرياضي

1) تحديد الهدف من الاختبار: قياس مهارات الترابط الرياضي لطلاب المرحلة الثانوية في الوحدة التكاملية كمثير تابع لأثر دراسة وفق البرنامج المقترح.

2) تحديد المهارات التي يكتبها الاختبار: حيث الاستعداد بقائمة مهارات الترابط الرياضي التي تم إعدادها في الخطوة الأولى من إجراءات البحث (ملحق 2)، المتمثلة في: تحديد العلاقة بين المعرفة السابقة والمعرفة الحالية. إدراج التكامل بين فروع الرياضيات، إدراج الروابط بين الرياضيات والعلوم الأخرى.

3) إعداد جدول مواصفات الاختبار: تتضمن الاختبار (20) مفردة تم توزيعها على مهارات الترابط الرياضي الموضحة سابقا كما هي موضحة في جدول (8).

جدول (8) جدول محاورات اختبار مهارات الترابط الرياضي

<table>
<thead>
<tr>
<th>Cancel (C)</th>
<th>21</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>ادراك التكامل بين فروع الرياضيات</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>التكامل بين الرياضيات والعلوم الأخرى</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>التعرف على التمكين الرياضية</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>المجموع</td>
<td>100</td>
<td>239</td>
</tr>
</tbody>
</table>
مج莉ة تربويات الرياضيات – المجلد (1) العدد (1) يناير 2004م الجزء الأول

للاختبار (40) درجة.
(1) صدق الاختبار: تم استخدام آراء قائمة المحكيمين (ملحق 1).
(2) التجربة الاستطلاعية للاختبار: تم تطبيق الاختبار على نفس العينة الاستطلاعية التي درست الوحدة التأكيمية، وذلك للتحقق مما يلي:
- فحص الاختبار: تم تطبيق الاختبار مرتين متتاليين على نفس العينة الاستطلاعية التي درست الوحدة التأكيمية، وعندما استمرت الزمن (88،00) وتوزع تقارنها جميع طلاب العينة الاستطلاعية، فوجد أن متوسط الزمن (88،00) دقيقة.
(3) وضع اختبار مهارات التوازي الرياضي في الصورة النابية (ملحق 10).

المراجعة الرابعة: إعداد مقياس تقدير القيمة العملية للرياضيات:
(1) تحديد الهدف من المقياس: التعرف على مستوى تقدير طلاب المرحلة الثانوية للقيمة العملية للرياضيات، على خلفية مرورهم بمشاريع، وخبرات الوحدة المدرسية (التوجيهي) حيث تظهر نتائج تدريس تلك الوحدة وفق البرنامج المفترض للدورة التأكيمية.
(2) تحديد الأبعاد التي يقيسها المقياس: حيث تم الاستعانة بأبعاد قائمة تقدير القيمة العملية للرياضيات السابق إعدادها في الخطة الثانية (ملحق 3) المتمثلة في:
- القيم العملية، القيم الفعلية، القيم التدريبية، القيم الإجمالية.
(3) صياغة قفرات المقياس في الصورة الأولية: تضمن الاختيار عدد (20) مقياس (يتوافق بين الإيجابية والسلبية) موزعة على مستوى الأربعة الرئيسية وفقا لمقياس ثلاثي (مقياس - محلي- غير مقبول)، بحيث يكون مفتاح التصحح كما في جدول (9):

<table>
<thead>
<tr>
<th>نوع العبارة</th>
<th>مستوى الاستجابة</th>
</tr>
</thead>
<tbody>
<tr>
<td>صفر</td>
<td>إيجابية</td>
</tr>
<tr>
<td>1</td>
<td>صفر</td>
</tr>
<tr>
<td>1</td>
<td>سلبية</td>
</tr>
</tbody>
</table>

وبذلك فقد تراوحت درجة المقياس بين -20، +20.
(4) صياغة تطبيقات المقياس: تأملب لغوي واضح وملائم لمستوى الطلاب.
(5) التحقق من ثبات المقياس: تم إعداد المقياس مرتين متتاليين، يفصل بينهما حوالي أسبوعين، وبحساب ثباته باستخدام معادلة هولستي جاءت قيمة معامل الثبات= (98،00) وهي قيمة عالية خاصة للثبات.

٢٤٠
المجلد (33) العدد (1) يناير 2020م

تم استطلاع آراء قائمة المحكمين (ملحق 1).

التجربة الاستطلاعية للمقياس: تم تطبيق المقياس على نفس المجموعة الاستطلاعية التي درست الوحدة التكميلية، وذلك للتحقق مما يلي:

• زمن تطبيق المقياس: تم حساب زمن المقياس عن طريق إيجاد متوسط الأزمنة التي استغرقت جميع الطلاب في الإجابة عليه فوجد أن متوسط زمن التطبيق (30 دقيقة).

وضع المقياس في الصورة النهائية (ملحق 11).

وذلك فقد اشتمل البحث على قائمة الملاحظات الموضحة فيما يلي (جدول 10):

<table>
<thead>
<tr>
<th>رقم المحقق</th>
<th>التفصيل</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>قائمة بأسماء السيدات المحكمين</td>
</tr>
<tr>
<td>2</td>
<td>دليل المعلم</td>
</tr>
<tr>
<td>3</td>
<td>قائمة مهارات التربوي الرياضي</td>
</tr>
<tr>
<td>4</td>
<td>اختبار كفاءة النموذج الرياضي</td>
</tr>
<tr>
<td>5</td>
<td>قائمة تقييم وحدة المحتوى</td>
</tr>
<tr>
<td>6</td>
<td>الأهداف التعليمية والسلوكية للوحدة المترتبة</td>
</tr>
<tr>
<td>7</td>
<td>مقياس تقييم النشاط الرياضي</td>
</tr>
<tr>
<td>8</td>
<td>الوحدة التكميلية</td>
</tr>
</tbody>
</table>

المرحلة الخامسة: تطبيق أدوات البحث: وفقًا للخطوات التالية:

1) اختبار عينة البحث: تم اختيار فصلين من فصول الصف الأول الثاني أحدهما تجريبي (29 طالب) والأخرى ضابط (29 طالب)، لتمثيل مجموعتي البحث، بحيث درس المجموعة التجريبية ووحدة المحتويات القائمة على البرامج المقترح للدخل التكميلي، بينما درس المجموعة الضابطية ووحدة المحتويات المدرسية القائمة على المدخل التقليدي (لا روتوند والكتاب المدرسي بدون تعديل)، كما روعي أن تدرس كلتا المجموعتين بطريقة التعلم النشط، وفي هذه التقويمات (من بداية الأسبوع السادس إلى نهاية الأسبوع السابع من الفصل الثاني للعام الدراسي 2020-17)، حتى يمكن إرجاع فروق النتائج بين المجموعتين (إذا وجدت).

2) تطبيق الاختبارات قبلًا: التحصيل، مهارات التربوي الرياضي، مقياس تقييم القيمة العملية للرياضيات على مجموعتي البحث وذلك بواقع يوم لكل اختبار على حدة على مدار (20) أيام متتالية، وذلك في نهاية الأسبوع الخامس من الفصل الثاني للعام الدراسي 2020-17.
تتعلق من تكافؤ مجموعتي البحث: وذلك من خلال حساب تحليل التباين بين متوسط درجات مجموعتي البحث في التطبيق القياسي لاختبارات التحصيل، الترابط الرياضي، تقدير القيمة العملية للرياضيات، لكنك عن دلالة الفروق، كما يلي (جدول: 12، 13، 14).

جدول (12) الدالة الإحصائية للتطبيق القياسي بين مجموعتي البحث في اختبار التحصيلي

<table>
<thead>
<tr>
<th>مصدر التباين</th>
<th>مستوى الدلالة</th>
<th>مجموع المربعات</th>
<th>التباين</th>
<th>د.ج</th>
</tr>
</thead>
<tbody>
<tr>
<td>بين المجموعات</td>
<td>33.66</td>
<td>1</td>
<td>33.66</td>
<td></td>
</tr>
<tr>
<td>داخل المجموعات</td>
<td>9.83</td>
<td>54</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>المجموع الكلي</td>
<td>54</td>
<td>55</td>
<td>0.17</td>
<td></td>
</tr>
</tbody>
</table>

جدول (13) الدالة الإحصائية للتطبيق القياسي بين مجموعتي البحث في اختبار الترابط الرياضي

<table>
<thead>
<tr>
<th>مصدر التباين</th>
<th>مستوى الدلالة</th>
<th>مجموع المربعات</th>
<th>التباين</th>
<th>د.ج</th>
</tr>
</thead>
<tbody>
<tr>
<td>بين المجموعات</td>
<td>0.1</td>
<td>1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>داخل المجموعات</td>
<td>3.2</td>
<td>54</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>المجموع الكلي</td>
<td>3.2</td>
<td>55</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

جدول (14) الدالة الإحصائية للتطبيق القياسي بين مجموعتي البحث في مقياس تقدير القيمة العملية للرياضيات

<table>
<thead>
<tr>
<th>مصدر التباين</th>
<th>مستوى الدلالة</th>
<th>مجموع المربعات</th>
<th>التباين</th>
<th>د.ج</th>
</tr>
</thead>
<tbody>
<tr>
<td>بين المجموعات</td>
<td>10.11</td>
<td>1</td>
<td>10.11</td>
<td></td>
</tr>
<tr>
<td>داخل المجموعات</td>
<td>4.13</td>
<td>54</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>المجموع الكلي</td>
<td>4.13</td>
<td>55</td>
<td>0.08</td>
<td></td>
</tr>
</tbody>
</table>

من الجداول: (12)، (13)، (14) يمكن استنتاج أن "لا توجد فروق ذات دلالة إحصائية بين متوسط درجات طلاب مجموعتي البحث في التطبيق القيمي في منغرات البحث الثالثة" وكذلك تم التحقق من تكافؤ مجموعتي البحث.

(4) إحساس مجموعتي البحث المتطلبات الرياضية السابقة: دراسة وحدة المتجهات.

(5) تطبيق البرنامج: تدريس الوحدة التكامليه للمجموعة التجريبية، وتدريس الوحدة التقليدية للمجموعة الضابطة وذلك حسب الخطة الزمنية لتوزييع المنهج المقرر مسبقًا من وزارة التعليم بواقع (20) حصص ب معدل حصة/يوم، استغرقت حوالي أسبوعين، من بداية الأسبوع السادس إلى نهاية الأسبوع السابع من الفصل الثاني للعام الدراسي 2015-2016م.

(6) تطبيق الاختبارات بعدين: التحصيل، الترابط الرياضي، تقدير القيمة العملية للرياضيات على مجموعتي البحث، وذلك بواقع يوم لكل اختبار على حدة على مدار (3) أيام متتالية في بداية الأسبوع الثامن من الفصل الثاني للعام الدراسي 2016-2017م.
المجلة السادسة: حساب نتائج البحث:

المرحلة الأولى: النتائج المرتبطة بالتحصيل:

(1) اختبار صحة الفرض الأول للبحث الذي ينص على أن "لا يوجد فروق ذات دلالة إحصائية بين متوسطي درجات طلاب مجموعتي البحث في التطبيق البعدي لاختبار التحصيل". ولتحقيق ذلك الفرض تم حساب تحليل التباين (ANOVA) متوسطي درجات مجموعتي البحث في التطبيق البعدي لاختبار التحصيل. كما هو موضح بجدول (15):

جدول (15) تحليل التباين بين درجات طلاب مجموعتي البحث في اختبار التحصيلي يعدًا

<table>
<thead>
<tr>
<th>مصدر التباين</th>
<th>عدد المجموعات</th>
<th>مجموع الدرجات</th>
<th>مجموع الدرجات بداخل المجموعات</th>
<th>مجموع الدرجات بين المجموعات</th>
<th>مجموع الدرجات الكلي</th>
</tr>
</thead>
<tbody>
<tr>
<td>غير دالة</td>
<td>9.6</td>
<td>9.2</td>
<td>52.3</td>
<td>12.43</td>
<td>72.55</td>
</tr>
<tr>
<td>بين المجموعات</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>داخل المجموعات</td>
<td></td>
<td>54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>المجموع الكلي</td>
<td></td>
<td>134.13</td>
<td></td>
<td></td>
<td>734.55</td>
</tr>
</tbody>
</table>

من جدول (15) يمكن استنتاج أن "لا يوجد فروق ذات دلالة إحصائية بين متوسطي درجات طلاب مجموعتي البحث في التطبيق البعدي لاختبار التحصيل". ولذلك يتم قبول الفرض الأول.

(2) اختبار صحة الفرض الثاني للبحث الذي ينص على أن "لا يوجد فروق ذات دلالة إحصائية بين متوسطي درجات الطالب التقليدي الفعلي والبعدي لطول مجموعتي البحث (كل على حدة) في اختبار التحصيل". ولتحقيق ذلك الفرض قام الباحث بحساب قيمة "T" Test (المرتبطة) لنسبة الفروق بين التطبيقين التقليدي والبعدي لكل مجموعة على حدة. وكانت النتائج كما في جدول (16): (17):

جدول (16) نسبة الفروق بين متوسطي درجات التطبيقين التقليدي والبعدي لتلاب المجموعة التجريبية في اختبار التحصيل

<table>
<thead>
<tr>
<th>المستوى المقارسة</th>
<th>التطبيق</th>
<th>درج</th>
<th>معدل</th>
<th>القيمة</th>
<th>معدل</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>المستوى الکلي للتحصيل</td>
<td>قلبي</td>
<td>7.6</td>
<td>27.6</td>
<td>1.88</td>
<td>4.14</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>بعدي</td>
<td>10.4</td>
<td>34.4</td>
<td>1.44</td>
<td>4.14</td>
<td>3.1</td>
</tr>
</tbody>
</table>

جدول (17) نسبة الفروق بين متوسطي درجات التطبيقين التقليدي والبعدي لتلاب المجموعة الضابطة في اختبار التحصيل

<table>
<thead>
<tr>
<th>المستوى المقارسة</th>
<th>التطبيق</th>
<th>درج</th>
<th>معدل</th>
<th>القيمة</th>
<th>معدل</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>المستوى الکلي للتحصيل</td>
<td>قلبي</td>
<td>8.8</td>
<td>29.4</td>
<td>3.0</td>
<td>3.0</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>بعدي</td>
<td>12.5</td>
<td>41.5</td>
<td>3.0</td>
<td>3.0</td>
<td>3.1</td>
</tr>
</tbody>
</table>

من جدول (17) يمكن استنتاج أن "لا يوجد فروق ذات دلالة إحصائية بين متوسطي درجات التطبيقين التقليدي والعَدَي لطول مجموعتي البحث (كل على حدة) في اختبار التحصيل لصالح التطبيق البعدي، وبذلك لا يتم قبول الفرض الثاني.

243
حساب "مربع إيتا \(\mu^2 \) " للمقارنة بين قوة تأثير معالجة المحتوى (تكاملي- تقليدي) على المتغير التابع (التحصيل).

وكانت النتائج كما هي موضحة في جدول (18)، (19):

جدول (18) قوة تأثير وحدة المتجهات التكاملية على التحصيل لطلاب المجموعة التجريبية

<table>
<thead>
<tr>
<th>المهارات المقاسة</th>
<th>دح</th>
<th>ت</th>
</tr>
</thead>
<tbody>
<tr>
<td>المستوى الكلي للتحصيل</td>
<td>62</td>
<td>296.6</td>
</tr>
</tbody>
</table>

جدول (19) قوة تأثير وحدة المتجهات التقليدية على التحصيل لطلاب المجموعة الضابطة

<table>
<thead>
<tr>
<th>المهارات المقاسة</th>
<th>دح</th>
<th>ت</th>
</tr>
</thead>
<tbody>
<tr>
<td>المستوى الكلي للتحصيل</td>
<td>58</td>
<td>296.5</td>
</tr>
</tbody>
</table>

من جدول (18)، (19) يمكن استنتاج أن:
1. "حوالي 98% من تباين درجات التطبيقين التقليدي والبدعي لطلاب المجموعة التجريبية في اختبار التحصيل يُعزى إلى تدريس وحدة المتجهات القائمة على البرنامج المقترح".
2. "حوالي 96% من تباين درجات التطبيقين التقليدي والبدعي لطلاب المجموعة الضابطة في اختبار التحصيل يُعزى إلى تدريس وحدة المتجهات التقليدية".

ثانياً: النتائج المرتبطة بالتوازي الرياضي

(1) اختبار صحة الفرض الثالث للبحث الذي ينص على أن "لا توجد فروق ذات دلالة إحصائية بين متوسطي درجات طلاب مجوعي البحث في التطبيق الليجي لاختبار التوازي الرياضي، وتتحقق من صحة هذا الفرض قام الباحث بحساب تحليل التباين (ANOVA) بين متوسطي درجات مجوعي البحث في التطبيق الليجي لاختبار التوازي الرياضي وذلك للكشف عن دلالة الفروق، وكانت النتائج كما في جدول (20):

جدول (20) تحليل التباين بين درجات طلاب مجوعي البحث في اختبار التوازي الرياضي بعد

<table>
<thead>
<tr>
<th>مصدر التباين</th>
<th>مجموع المراعيات</th>
<th>دح</th>
<th>ت</th>
</tr>
</thead>
<tbody>
<tr>
<td>بين المجموعات</td>
<td>212.18</td>
<td>1</td>
<td>103.6</td>
</tr>
<tr>
<td>داخل المجموعات</td>
<td>13.89</td>
<td>54</td>
<td>76.31</td>
</tr>
<tr>
<td>المجموع الكلي</td>
<td>236.17</td>
<td>55</td>
<td>280.5</td>
</tr>
</tbody>
</table>

من جدول (20) يمكن استنتاج أن "لا توجد فروق ذات دلالة إحصائية عند مستوى (0.01) بين متوسطي درجات طلاب مجوعي البحث في التطبيق الليجي لاختبار التوازي الرياضي"، وذلك لا يتم قبول الفرض الثالث.

حساب قيمة "T" Test (المستقبلة) بين متوسطي درجات طلاب مجوعي البحث في التطبيق الليجي لاختبار التوازي الرياضي لتحديد اتجاه الفروق، كما في جدول (21):
جدول (21) دالة الفروق بين مستوي درجات مجموعتي البحث لاختبار الترابط الرياضي بعدها

من جدول (21) يمكن استنتاج أن "توجد فروق دالة إحصائية عند مستوى (0.01) بين متوسطي درجات طلاب مجموعتي البحث في التطبيق البدعى لاختبار الترابط الرياضي لصالح المجموعة التجريبية".

حساب "مربع إتا " للمقارنة بين قوة تأثير معالجة المحتوى (تكاملي- تقليدي) على المتغير التابع (الترابط الرياضي). وكانت النتائج كما في جدول (22):

جدول (22) قوة تأثير معالجة المحتوى (تكاملي- تقليدي) على الترابط الرياضي

من جدول (22) يمكن استنتاج أن: "حوالي 88% من تباين المدرجات بين مجموعتي البحث في التطبيق البدعى لاختبار الترابط الرياضي يُعزى إلى معالجة المحتوى وفق البرنامج المقترح القائم على المدخل التكامل".

4) اختبار صحة الفرض الرابع للبحث: ينص الفرض الرابع على أنه "لا توجد فروق ذات دالة إحصائية بين متوسطي درجات التطبيق الثقافي والمطرودي لطلاب مجموعتي البحث (كل على حدة) في اختبار الترابط الرياضي. وتتحقق من صحة هذا الفرض قام الباحث بحساب قيمة "ت" "T" Test" (المربطة) لدالة الفروق بين التطبيق الثقافي والمطرودي لكل مجموعة على حدة. وكانت النتائج كما في الموضحة بجدول (23) ، (22):

جدول (23) دالة الفروق بين درجات التطبيق الثقافي والمطرودي لطلاب المجموعة التجريبية في اختبار الترابط الرياضي

جدول (24) دالة الفروق بين درجات التطبيق الثقافية والمطرودي لطلاب المجموعة الضابطة في اختبار الترابط الرياضي

745
تحت مراجعة وتحليل التباين، يمكن استنتاج أن هناك فروقً ذات دلالة إحصائية عند مستوى 0.01 بين متوسطي التطورات النسبية بالتدريب على الرؤية المضادة لل LOWER (كل على حدة) في اختبار الترابط الرياضي لصالح التطبيق البديل، وذلك لا يتم حسب "مربع إيتا" للمقارنة بين قوة تأثير معالجة المحتوى (تكاملي- تقليدي) على المتغير التتابع (التمارين الرياضي)، وكانت النتائج كما في جدول (27) حيث:

جدول (26) قوة تأثير وحدة التمكينات المتكاملة على الترابط الرياضي لطلاب المجموعة التجريبية:

<table>
<thead>
<tr>
<th>المهارات المقابلة</th>
<th>الممارسة الكلية للتمارين الرياضية</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0.96</td>
</tr>
<tr>
<td>14</td>
<td>0.72</td>
</tr>
</tbody>
</table>

جدول (27) قوة تأثير وحدة التمكينات التقليدية على الترابط الرياضي لطلاب المجموعة الضابطة:

<table>
<thead>
<tr>
<th>المهارات المقابلة</th>
<th>الممارسة الكلية للتمارين الرياضية</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>0.18</td>
</tr>
<tr>
<td>26</td>
<td>0.47</td>
</tr>
</tbody>
</table>

من جدول (25) (26) يمكن استنتاج أن:
1. حوالي 69% من تباين الدرجات بين الت صفيفين الفعلي والعادي للمجموعة التجريبية، في اختيار الترابط الرياضي يُعزى إلى وحدة التمكينات القائمة على البرنامج المقترح.
2. حوالي 74% من تباين الدرجات بين الت صفيفين الفعلي والعادي للمجموعة الضابطة، في اختيار الترابط الرياضي يُعزى إلى وحدة التمكينات التقليدية.

ثالثاً: النتائج المرتبطة بتقدير القيمة العملية للرياضيات:
(5) اختبار فرضية الفرض الخامس للبحث الذي ينص على أن "لا توجد فروق ذات دلالة إحصائية بين متوسطي درجات طلاب مجموعتي البحث في التطبيق البديل لمقياس تقديم القيمة العملية للرياضيات". وتحقيق من صحة الفرض قام بالبحث بحساب تحليل التباين (ANOVA) بين متوسطي درجات مجموعتي البحث في التطبيق البديل لمقياس تقديم القيمة العملية للرياضيات وذلك للكشف عن دلالة الفروق، وكانت النتائج كما هي في جدول (27):

جدول (27) تحليل التباين بين درجات طلاب مجموعتي البحث في مقياس تقديم القيمة الرياضية بعد تدريب:

<table>
<thead>
<tr>
<th>مصطلح التباين</th>
<th>مجموع المربعات</th>
<th>درجات</th>
<th>التباين</th>
<th>مستوى الدلالة</th>
</tr>
</thead>
<tbody>
<tr>
<td>بين المجموعات</td>
<td>2459.37</td>
<td>1</td>
<td>2459.37</td>
<td>0.01</td>
</tr>
<tr>
<td>داخل المجموعات</td>
<td>54</td>
<td>54</td>
<td>2949.50</td>
<td></td>
</tr>
<tr>
<td>المجموع الكلي</td>
<td>2459.37</td>
<td>54</td>
<td>2459.37</td>
<td></td>
</tr>
</tbody>
</table>

206
من جدول (27) يمكن استنتاج أن "توجد فروق ذات دلالة إحصائية عند مستوى 0.001" بين متوسطي درجات طلاب مجموعتي البحث في التطبيق البعدي لقياس تقييم الدراسة، وذلك لا يتم قبول الفرض الخاص.

حساب قيمة "T" (المستقلة) بين متوسطي درجات طلاب مجموعتي البحث في التطبيق البعدي لقياس تقييم الدراسة، لتحديد اتجاه الفروق. وكانت النتائج كما هي موضحة بجدول (28):

جدول (28) دلالة الفروق بين متوسطي درجات مجموعتي البحث لقياس تقييم الدراسة

<table>
<thead>
<tr>
<th>المجموعة</th>
<th>العدد الناجي</th>
<th>الانحراف المعياري</th>
<th>درجات الحرية</th>
<th>T</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>التجريبية</td>
<td>37</td>
<td>3.34</td>
<td>14.67</td>
<td>54</td>
<td>0.01</td>
</tr>
<tr>
<td>الضابطة</td>
<td>29</td>
<td>2.84</td>
<td>14.67</td>
<td>54</td>
<td>0.01</td>
</tr>
</tbody>
</table>

من جدول (28) يمكن استنتاج أن "توجد فروق ذات دلالة إحصائية عند مستوى 0.01" بين متوسطي درجات طلاب مجموعتي البحث في التطبيق البعدي لقياس تقييم الدراسة، لصالح المجموعة التجريبية.

حساب "مربع إيتا" "المقارنة بين فرق "ت" تأثير معالجة المحتملي" (تكامي. تقليدي) على المتغير التتابع "ت" تقييم الدراسة "المجموعات الإدارية للرياضيات"، وكانت النتائج كما هي موضحة بجدول (29):

جدول (29) قوة تأثير معالجة المحتملي على تقييم الدراسة للرياضيات

<table>
<thead>
<tr>
<th>المهارات المقصدة</th>
<th>"μ"</th>
<th>"T"</th>
<th>Df</th>
</tr>
</thead>
<tbody>
<tr>
<td>المهارة الكلية</td>
<td>0.8</td>
<td>14.67</td>
<td>54</td>
</tr>
</tbody>
</table>

من جدول (29) يمكن استنتاج أن: حوالي 80% من تباين الدرجات بين مجموعتي البحث في التطبيق البعدي لقياس تقييم الدراسة يعزى إلى معالجة المحتملي وفق البرنامج المُقترح.

(2) اختبار صحة الفرض السادس للبحث الذي ينص على أن "لا توجد فروق ذات دلالة إحصائية بين متوسطي درجات التطبيقين التقليدي والبعدي لطلاب مجموعتي البحث كل على حدة" في مقياس تقييم الدراسة "المجموعة"، وللحصول من صحة هذا الفرض قام الباحث بحساب قيمة "T" "Test " (المرتبطة) لدالة الفروق بين التطبيقين التقليدي والبعدي لكل مجموعه على حدة في مقياس تقييم الدراسة للرياضيات. وكانت النتائج كما هي موضحة بجدول (30): (21):
جدول (30) دالّة الفروق بين درجات التطبيقات القبلي والبديهي للمجموعة التجريبية

<table>
<thead>
<tr>
<th>المهارات المقدسة</th>
<th>التطبيق</th>
<th>مستوى الدالة</th>
<th>قلم</th>
<th>جدغ</th>
<th>نتيجة</th>
</tr>
</thead>
<tbody>
<tr>
<td>المهارة الكلية</td>
<td></td>
<td>18.9</td>
<td>1.8</td>
<td>0.27</td>
<td>42.6</td>
</tr>
<tr>
<td>يدوي</td>
<td></td>
<td>13.3</td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول (31) دالّة الفروق بين درجات التطبيقات القبلي والبديهي للمجموعة الضابطة في مقياس تقدّر قيمة الرياضيات

<table>
<thead>
<tr>
<th>المهارات المقدسة</th>
<th>التطبيق</th>
<th>مستوى الدالة</th>
<th>قلم</th>
<th>جدغ</th>
<th>نتيجة</th>
</tr>
</thead>
<tbody>
<tr>
<td>المهارة الكلية</td>
<td></td>
<td>44</td>
<td>0.4</td>
<td>1.52</td>
<td>8.34</td>
</tr>
<tr>
<td>يدوي</td>
<td></td>
<td>3.28</td>
<td>4.31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

من جدول (31) (32) يمكن استنتاج أن "توجد فروق ذات دالّة إحصائية عند مستوى (0.01) بين متوسطي التطبيقات القبلي والبديهي لطلاب مجموعتي البحث كل على حدة في مقياس تقدّر القيمة العملية للرياضيات لصالح التطبيق البديهي".

والنّال لا يتم قبول الفرض السائد.

حساب "مربع إتنا" للمقارنة بين قوة تأثير معالجة المحتوى (تكاميلاً - تقليدياً) على المتغير التفاعلي (تقدّر القيمة العملية للرياضيات)

كما هي موضحة بجدول (32) (33).

جدول (32) قوة تأثير وحدة المتجهات التكاملية على تقدّر القيمة العملية للرياضيات لطلاب المجموعة التجريبية

<table>
<thead>
<tr>
<th>المهارات المقدسة</th>
<th>تدغج</th>
<th>مستوى الدالة</th>
</tr>
</thead>
<tbody>
<tr>
<td>المهارة الكلية</td>
<td>0.93</td>
<td>18.9</td>
</tr>
</tbody>
</table>

جدول (33) قوة تأثير وحدة المتجهات التقليدية على تقدّر القيمة العملية للرياضيات لطلاب المجموعة الضابطة

<table>
<thead>
<tr>
<th>المهارات المقدسة</th>
<th>تدغج</th>
<th>مستوى الدالة</th>
</tr>
</thead>
<tbody>
<tr>
<td>المهارة الكلية</td>
<td>0.17</td>
<td>2.4</td>
</tr>
</tbody>
</table>

من جدول (33) (34) يمكن استنتاج أن:
1) 93% من تباين الدرجات بين التطبيقات القبلي والبديهي للمجموعة التجريبية في مقياس تقدّر القيمة العملية للرياضيات يعزى إلى وحدة المتجهات القائمة على البرنامج المُقترح.
2) 17% من تباين الدرجات بين التطبيقات القبلي والبديهي للمجموعة الضابطة بمقياس تقدّر القيمة العملية للرياضيات يعزى إلى وحدة المتجهات التقليدية.

المرحلة السابعة: التبليغ على نتائج البحث: ذلك نتائج البحث على ما يلي:
1. تكافأ مجموعتي البحث في التحصيل: وقد يرجع ذلك إلى أن كلا المجموعتين قد تلقت نفس النوع من استراتيجيات التعلم النشط (سواء الوحدة التكاملية أو الوحدة).
المجلة (٢٣) العدد (١) يناير ٢٠٢٠ المجلد (١)

التبلديات، التي تعمل على مراعاة الفروق الفردية بين المتعلمين حسب القدرات التحصيلية التي تسمح بها إمكانات كل متعلم على حدة، وهو ما قد ينجم بشكل إيجابي في رفع مستوى التحصيل لكلا المجموعتين التربويين والضابطية.

2. وجد فروق في مجال مهارات التدريب الرياضي وتقدير القيمة العملية للرياضيات: وقد يرجع ذلك إلى دعم وإثارة موضوعات الوحدة التكاملية بالأنشطة والمواعف التي تصل بالمتعلم إلى مستوى التمكن من مهارات التربعي الرياضي في مواقف مجموعة هذه المواقف في الوحدة التقليدية. كما أن هذه المواقف قد ساهمت في تعريف الطالب بالدور الإيجابي، والميكانة الضابطية. الباحث يرأى أنها فضلاً عن دورها التمييز في المواد الأخرى ما أسفر بشكل إيجابي في تقدير القيمة العملية للرياضيات.

3. وجد فروق بين التطبيق القبلي والبعدي لمجموعة البحث في متغيرات البحث الثلاث لصالح التطبيق البديهي: وهي نتيجة تنفيذية لمجموعة التدريبية كتتي دورة الوحدة التكاملية بالأنشطة والمواعف التي تعمل على تنمية متغيرات البحث الثلاثة. أما المجموعة الضابطية: فالنسبة للمتعلم فإن مرور المناهج和技术ية قد أسهم بمؤثر كبير في رفع مستوى تحصيله، أما عن متغير التطبيق الرياضي فهو يعتبر الرحلة للبحث على الرغم من أن نتيجة تحليل وحدة المتغيرات التقليدية قد أسهمت عن ضغوط المواقف والتطبيقات التي تعمل على تنمية مهارات التربعي الرياضي إلا أنها قد أسهمت بمأثور ضئيل في رفع مستوى مهارات التربعي الرياضي وهو أيضًا ما أسهم بمأثور ضئيل في تقدير القيمة العملية للرياضيات بشكل إيجابي (حيث كانت قيمة تأثير كلا المتغيرين في المستوى الضعيف).

المرحلة الثانية: تدريس التوصيات: مما تقدم أوصى الباحث بما يلي:

1. تطوير وتحديث مناهج الرياضيات المدرسية لكي تصل إلى التدريس، وإعداد تنظيمها في ضوء مبادئ ومعايير المدخل التكامل.

2. دمج الأنشطة والمواعف الرياضية التي تعمل على تنمية مهارات التربعي الرياضي ضمن موضوعات ودوام الرياضيات المدرسية بمراتب التعليم.

3. اثراء موضوعات ودوام الرياضيات المدرسية بالمواعف والأنشطة التي تعمل على التدريس الإيجابي للغة العملية للرياضيات.

4. دعم فروع العلم الأخرى بالتطبيقات الرياضية التي تبرز دور الإيجابي للرياضيات في كافة فروع العلم والمعرفة.

5. تدريس فروع الرياضيات بالطريقة التي تعمل على دعم العلاقة الوثيقة بينها.

المرحلة التالية: اقتراح بحوث مستقبلية: مما تقدم اقتراح البحوث إجراء البحوث التالية:

1. مداخل مقترحة لتنمية مهارات التربعي الرياضي لمراحل تدريسية مختلفة.
3. استراتيجية مقتراحة قائمة على المدخل التكاملي لتنمية المفاهيم الرياضية لمراحل مختلفة.

3. برنامج مقترح لتدريب معلمي رياضيات المرحلة الابتدائية على تطبيق المدخل التكامل.

4. برنامج قائم على المدخل التكامي لتنمية مهارات الترابط الرياضي لمراحل تعليمية مختلفة.

5. أثر المدخل التكامي في تنمية المهارات الرياضية والاتجاه نحو الرياضيات لدى طلاب أي مرحلة تعليمية ذوي صعوبات تعلم.

مجلة ترمويات الرياضيات — المجلد (33) العدد (1) يناير 2004م الجزء الأول
المراجع العربي

1. أبو الجنّي، مصطفى (2011). تقييم محتوى مناهج الرياضيات الفصليين في ضوء بعض معايير معايير المجتمع الدولي لمعلمي الرياضيات، رسالة ماجستير (غير نشرة)، كلية التربية، جامعة الأزهر، غزة.
4. بديوي، رشيد مسعود (2007). تدريس الرياضيات الفعال من رياض الأطفال حتى السادس الإبتدائي، ط (6)، دار الفكر للطباعة والنشر، عمان، الأردن.
5. البركاتي، نيفين (2008). أثر التدريس باستخدام استراتيجيات التفاعلات المتعددة والقيميات في التصحيح الدراسى، ومهارتي التواصل والاتصال الرياضى لدى طلاب الصف الثالث المتوسط، رسالة دكتوراه (غير نشرة)، كلية التربية، جامعة أم القرى.
7. يهود، عيد الجواد؛ وطبعة، حسن هاشم (2007). فاعلية نموذج قائم على المعتقدات المعيارية في تنمية القوة الرياضية لدى طلاب المرحلة الثانوية، رسالة دكتوراه (غير نشرة)، كلية التربية، جامعة عمان.
9. الجبري، عباس (2002). مفهوم الفهم وفسئته وتشكلها الواقع والتمثيل في منظور الإسلام، أعمال ندوة أزمة الفهم ودور الأسرة في تطور المجتمع المعاصر (مطبوعات أكاديمية الملكة المريمية)، طبعة المعارف الجديدة، الرياض.
12. الرياضيات والتعليم، نشرة الإعداد، دار الضيافة، جامعة عمان، 8–9 أكتوبر.
13. الجربو، داود; الحاجي، رياح محمد (2009). فعالية المدخل التكامل في تنمية مهارات التفكير الفني لدى طلاب الصف الثاني الثانوي، المؤتمر العلمي العربي السنوي لرعاية الموهوبين والمتفوقين، رعاية المتفوقين، أثرهم على مستوى المتفوقين، ج (1)، الأردن.
مجلة تربية الرياضيات – المجلد (33) العدد (1) يناير 2004م الجزة الأول

16. ديب، بسام (2004). فاعلية استراتيجية متفرقة تستخدم أسلوب الروابط الرياضية في تنمية التحصيل والاستقلالية التعلم لدى تلاميذ الصف السابع الأساسي في ضوء مستويات الجودة في النظام التعليمي، رسالة دكتوراه (غير منشورة)، برامج الدراسات العليا المشتركة بين جامعة الأقصى وجامعة عين شمس، كلية التربية، جامعة الأقصى، غزة.

23. شنطاوي، إبراهيم (2009). أثر التدريس بمنهج التكامل بين العلوم والرياضيات بمظورين في مستوى التحصيل العلمي والرياضى لدى طلاب الصف الخامس الأساسي، رسالة ماجستير (غير منشورة)، جامعة اليرموك، الأردن.

http://arabic.iiit.org/Default.aspx?tabid=71&articleType=ArticleView&articleId=5

الطاولة، بهاء الدين عبد الله علي (2015). تطوير وحدتين دراسيتين قائمتين على الطريق بين الرياضيات والعلوم وقياس أثره في تحسين مهارات التفكير العلوي والشيفرة الرياضية النظريَّة لدى طلاب الصف الثاني الأساسي، رسالة دكتوراه (غير منشورة)، كلية الدراسات العليا، جامعة العلوم الإسلامية العالمية، الأردن.

27. عبد المجيد، أحمد (2013). أثر استخدام استراتيجيات التدريس البصري على مستوى تطوير الفهم والتعلم الذي ناشأ نتيجة الدراسة، المقالة المبكرة، مجلة الدراسات التربوية والنفسية، ص ص (169-199).

45. Ault, M (2006). The Effects of A Standard-Based Mathematics Program on Student Achievement at a Suburban Public Middle School In the Midwest, Ph.D. College of Education, University of Cincinnati.

