برنامج مقترح قائم على متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية لتنمية مهارات استخدام البرمجيات الديناميكية والمعتقدات التكنولوجية لدى الطلاب المعلمين بكلية التربية.

A Suggested Program Based on Requirements for Teaching Mathematics in the Digital Age Using Collaborative Web Applications on Developing Dynamic Software Skills and Technological Beliefs of Prospective Math teachers.

د. حشمت عبد الصابر أحمد مهاود
مدرس المناهج وطريقة التدريس
كلية التربية - جامعة سوهاج
heshmat_math@edu.sohag.edu.eg
Abstract:
Dynamic mathematics software (DMS) skills are one of the key skills that teachers must acquire in the digital age. As well teachers’ beliefs are also one of the most important factors for teaching with technology. Thus, the current study aimed at investigating the effectiveness of a Suggested program Based on Requirements for Teaching Mathematics in the Digital Age Using Collaborative Web Applications on Developing DMS Skills and Technological Beliefs of Prospective Math teachers. To fulfill the purpose of the study, A Suggested program Using Collaborative Web Applications was utilized, a list of Requirements for Teaching Mathematics in the Digital age, and a list of DMS Skills for prospective math teachers was designed. The study relied on three tools: cognitive aspects associated with the DMS Skills test, an observation checklist for teachers’ performance, and a technological belief scale. The validity and reliability of the study tools were established. The study adopted the quasi-experimental design and used a pre – post experimental group. Fifty (50) Prospective Math Teachers in the fourth level majoring in mathematics participated in the study. The suggested program Using Collaborative Web Applications was administered to the participants for about 58 hours. A statistical data analysis was conducted. Results revealed the effectiveness of the proposed program in developing both cognitive and performance aspects associated with the DMS Skills and Technological Beliefs of Prospective Math teachers. Based on the results, The study recommended training mathematics teachers on using DMS in teaching mathematics and developing prospective teachers’ beliefs about teaching with technology.

Keywords: Teaching Mathematics, Digital Age, Collaborative Web Applications, Dynamic software (DMS) skills, Technological Beliefs, Prospective Math teachers.
مقامة:

بعد المعلم أحد الأركان المهمة في العملية التعليمية والعنصر الفاعل فيها، وفي ظل التطورات التكنولوجية التي يشهدها العالم اليوم، تغير دور المعلم؛ فلم يعد ناقلاً للمعرفة أو ملقناً لها فقط، بل أصبح دوره يركز على تنمية قدرة المتعلمين للوصول إلى المعرفة بنفسهم، وصار إعداد وتأهيل معلم الرياضيات لتوفير التطورات التعليمية في العملية التعليمية ضرورة لا بد منها.

وفي ضوء التوجهات الحديثة لتعليم وتعلم الرياضيات، اعتمدت وزارة التربية والتعليم المصرية خطة شاملة لتطوير مناهج الرياضيات المدرسية، بدأت منذ عام 2018/2019، وبدء إطلاق نظام تعليم جديد أطلق عليه (Education 2.0)، يهدف إلى إعداد الطلاب لمواقف تحديات القرن الحادي والعشرين، ومن أهم ملامح المناهج المطورة تفعيل استخدام التقنية، وربطها بالكتب الدراسية، ودمجها في عملية التعليم والتعلم، كذلك التركيز على تفعيل المستجدات التكنولوجية أثناء التدريس واستخدام طرق وأساليب تدريسية حديثة، حيث تشير (تفية سيد غانم، 2019)، أن المناهج المطورة تقوم على مجموعة من المركزيات، ومنها: تعزيز المهارات الحياتية، التركيز على مهارات رياضة الأعمال، تعزيز القيم الإيجابية، النمو الشامل للمتعلم، التركيز على مهارات التفكير الناقد، إتقان مهارات التعلم الذاتي والمستمر، التوازن بين تقييم المعرفة، دمج التكنولوجيا في المنهج الدراسي.

ورغم هذا الأمر الذي ينتظرونه أن تتزامن مع عملية تطوير المناهج إعداد وتدريب معلمي الطلاب معلم الرياضيات، وتزويدهم بالمعرف والمهارات التكنولوجية التي تمكنهم من تطوير مهاراتهم؛ ليكونوا قادرين على القيام بدورهم والوفاء بمتطلباتهم، وتحقيق المناهج المطورة أهدافها بشكل مطلوب.

وقد تم برمجيات الرياضيات الديناميكية أحد أشكال توظيف التكنولوجيا في تعليم الرياضيات، التي ظهرت في أوائل القرن الحادي والعشرين، وتمثل برامج حاسوبية تتبع للمستخدم رسم الأشكال الهندسية ثنائية وثلاثية الأبعاد، والتحكم في خصائصها، وطرق عرضها، تمثل الدوال، وحل المتباينة والمعادلات، إجراء التحويلات الهندسية مثل: الانقلاب، والدوران والانعكاس، إجراء الواجبات الرياضية مثل التفاضل والتكامل وحساب النهايات، إجراء بعض العمليات الإحصائية والتمثيل البياني (شادي ميلاد غالي، 2022، 116-119) وعرض المحتوى الرياضي بطريقة مشوقة وجذابة، واكتشاف خصائص الأشكال الهندسية؛ مما يساعد المعلم على التوصل إلى

(3): يتم التوثيق في هذا البحث وفقاً لأسلوب الجمعية الأمريكية لعلم النفس (APA Style v.6)
وتشير نتائج عطية المحمدي (2012) أن برامج الرياضيات الديناميكية تقدّم تطبيقاً جديداً لاستخدام الحاسوب كأداة فعّالة في تنمية التفكير، تساعدهل تعلم على إدراك المفاهيم الرياضية، وتجسيدها بطريقة محسّسة، وربط الأفكار الرياضية ببعضها البعض، وبناء الثقة المتعلّم نفسه، وتحسين تحصيل الطالب، وتنمية قدرته على تعلم الرياضيات، وأنّ توظيف البرامج التفاعلية في تعلم والتعليم الرياضيات يعكس أفكار النظرية البدنية.

وتشير نتائج بسمة محمود عبد العظيم وآخرون (2014) أن توظيف برامج الرياضيات الديناميكية في تعليم وتعلم الرياضيات يعطي الفرصة للتعلم بالتفاعل مع المحتوى الرياضي؛ مما يساعد في تنمية مستويات التفكير العليا، والمهارات المعرفية لدى المتعلّمين، والتغلب على صعوبات التعلم لديهم، يجعل تعلم الرياضيات عملية مشوقة ومحببة للتماثيز، وتشيرهم بالمتعة أثناء تعلم الرياضيات، مما يزيد من دافعهم نحو تعلم الرياضيات، ويشجعهم على مواصلة تعلم الرياضيات وتعزيزها، من خلال عرض المعلومات الرياضية بطرق متنوعة، وتيجي للمتعلم بالطرق المناسبة.

كما اشتملت بعض الدراسات بتنمية مهارات استخدام برامج الرياضيات الديناميكية في تعليم وتعلم الرياضيات لدى المعلمين، الطلاب معملي الرياضيات، ومنها: علي محمد غريب (2019)، عبير سليمان حسين (2020)، وهدفت بعض الدراسات إلى

(*) سيتستخدم اختصار GSP للدلالة على برنامج الرسم الهندسي GeoGebra.

يتضح مما سبق أهمية امتلاك الطلاب المعلمين مهارات استخدام البرمجيات الديناميكية وتوفيرها في التعليم وتعلم الرياضيات، حيث إنها تجعل المتعلم إيجابي ومستقل في العملية التعليمية، تستمد أحياناً لكنها اكتشف جوانب التعلم الرياضياتية، تسهم في تنمية فهم الطلاب للمفاهيم الرياضية، وتحسين قدرتهم على البرهان الرياضي؛ لذلك أصبح من الضروري اكتساب الطلاب مهارات الرياضيات مهارات استخدام تلك البرمجيات وتوفيرها مستقبلاً في تعليم وتعلم الرياضيات.

والرغم من أهمية استخدام برمجيات الرياضيات الديناميكية في تدريس الرياضيات؛ إلا أن هناك ضعفاً في مهارات استخدامها لدى الطلاب معلمي الرياضيات، وأن توظيفها من جانب معلمي الرياضيات أثناء التدريس لم يتم بالضرورة المرجوة، وترجع عبير سليمان حنين (2020، 95) أساس ذلك إلى عدم توافر المهارات لدى المعلمين لاستخدامها بسرعة وإتقان، وأن أكثر المعوقات التي تحد من استخدام برمجيات الرياضيات الديناميكية في التدريس هو عدم تدريبيهم على تلك البرمجيات، وذكر إكرامي محمد مرسل (2017، 21) أن عدم توظيف معلمي الرياضيات لبرمجيات الرياضيات الديناميكية في التدريس يرجع لسبب عدم إجادة استخدامها، واعتقاد بعض المعلمين أن استخدام التكنولوجيا مضيعة للوقت.

وتعد معتقدات المعلمين من أهم العوامل المؤثرة في عمليتي التعليم والتعلم، حيث تذكر نورة عوضه الأسمري وآخرون (2022، 203) أن معتقدات معلم الرياضيات تحدد عملاً مؤثراً وفاعليةً في ممارساتهم الصفية، وتعمل على توجيه مدركاته وسلوكه تجاه قضايا معينة، وأن التفكير عن معتقدات المعلمين وتطوريها يسهم في بناء المعتقدات العلمية والوجبانية لدى المعلمين في الممارسة الصفية، لأن الاعتقاد المناسب يجعل المعلم أكثر إدراكاً لأهمية تلك الممارسات، ويوفر بقناعة على تفعيل المستجدات التربوية في الغرفة الصفية.

وتذكر سامية حسن الحربي وعبدالعزيز محمد الرويس (2022، 11-13) أن ممارسات معلم الرياضيات تتغير ما يحمله من أفكار ومعتقدات، ودود معتقدات معلم الرياضيات وأتجاهاتهم نحوها من فروع العوامل التي تؤثر على تنفيذ المنهج؛ حيث تدفق المعتقدات المنتجة للمعلمين إلى تبني ممارسات تدريسية فعالة، وذكر تهاني عبد الرحمن المزيني (2021، 184) أن معتقدات المعلمين تؤثر في الإجراءات التي تتم داخل الصف الدراسي، وتشكل معتقدات المعلمين في مرحلة إعدادهم.
ويعتمد عليها مهاراتهم، ويسهم الكشف المبكر عن هذه المعتقدات وتنميتها في رفع كفاءته واستعداداتهم ومهاراتهم.

وتعد معتقدات المعلم نحو دمج التكنولوجيا عملاً مهماً في استخدام التكنولوجيا في الصف الدراسي، وتتمثل أهم العناصر الأساسية اللازمة لنجاح التكامل التكنولوجي، حيث ذكر أحمد جابر السيد وآخرون (2022، 201) أن معتقدات المعلمين التكنولوجية تعد عامل أساسي في دعم استخدام التكنولوجيا في التدريس، فإذا رأى المعلم أن استخدام التكنولوجيا عملاً مشجعاً فتتغير معتقداته نحو استخدامها ودمجها في التدريس.

وتذكر سحر ماهر الغنام (2021، 78) أن معتقدات معلم الرياضيات التكنولوجية لها دور كبير في استخدام الأدوات التكنولوجية في الصف، وتعتبر واحدة من أولى المشاكل التي يجب التغلب عليها من أجل دمج التكنولوجيا بصورة فعالة في العملية التعليمية، حيث أشارت نتائج اختبار برنامج التقييم الدولي للطلاب أنه لا يوجد فرق بين نتائج الطلاب في الدول التي توفر بها الإمكانيات التكنولوجية واستخدامها بكثافة، والدول التي لا توفر بها تلك الإمكانيات، والسبب في ذلك لا يرجع إلى عدم امتلاك التكنولوجيا، بل يرجع إلى معتقدات المعلمين حول دمج التكنولوجيا بصورة فعالة تتمثل بوجود معتقدات المعلم في دمج التكنولوجيا في الصف الدراسي بشكل فعال تتمثل جزء أساسي لتنفيذ المناهج الدراسية بنجاح، وأن من أهم العوائق التي تحول دون دمج المعلمين للتكنولوجيا بنجاح في فصولهم الدراسية تتمثل في معتقدات المعلمين حول الفائدة المتصورة للتكنولوجيا في التدريس.

وتذكر هوديا محمد سيد (2022، 195) أن نقل المعلم لفكرة دمج التكنولوجيا في تدريس الرياضيات، واهتمامه بها يعتمد على معتقداتهم حول هذه الأفكار، وتأثير هذه المعتقدات على تطوير أدائهم ونمونهم المهني، وأن جودة التعليم الذي يقدمه المعلم يعتمد على معتقدات وتصوراته حول ما يدرسه للطلاب.

ووقصد أهمية المعتقدات التكنولوجية لمعلم الرياضيات فقد اهتمت عدد من الدراسات بتنميتها لدى المعلمين/ الطلاب المعلمين من خلال برامج وطرق تدريسية متنوعة، ومنها: هاشم رشاد محمد (2022)، سحر ماهر الغنام (2011)، والتي أكدت جميعها على أهمية المعتقدات التكنولوجية لدى الطلاب المعلمين الرياضيات، وأوصت بتنميتها لدى الطلاب المعلمين والمعلم.

وعلى الرغم من اهتمام الدراسات التربوية بالتفتيح على معتقدات معلم الرياضيات تجاه تعليم الرياضيات، إلا أن الكشف عن أفكار معلم الرياضيات المتعلقة باستخدام التكنولوجيا في وإنجازاتها على تدريس الرياضيات لم يلقي اهتماماً كافياً من الباحثين، حيث تشير دراسة "ثورم وبرزل" (Thurm & Barzel, 2022) أن معتقدات
الكفاءة الذاتية للمعلم، والمعتقدات المعرفية، والمعتقدات حول التدريس باستخدام التكنولوجيا من العوامل المهمة لتدريب الرياضيات باستخدام التكنولوجيا؛ ومع ذلك فإن هناك نقصاً في البحث حول هذه المعتقدات؛ ولذلك يصبح من الأهمية بمكان القيام بدراسة لدراسة الفهم والتصورات التي يحملها المعلمون نحو توظيف التكنولوجيا في تدريس الرياضيات.

يتضح مما سبق أهمية الاهتمام في برامج إعداد معلم الرياضيات بتقنية مهارات استخدام التكنولوجيا لدى معلم الرياضيات، ومن أهمها برامج الرياضيات الديناميكية، وكذلك الاهتمام بتقنية معتقدات معلم الرياضيات الإيجابية نحو توظيف تلك المصادر في تدريس الرياضيات، مما يعكس بصورة إيجابية على تحصيل المتعلم.

ولكي يتم تنمية مهارات استخدام برامج الرياضيات الديناميكية والمعتقدات التكنولوجية لدى معلم الرياضيات، فإن ذلك يتطلب بناء برامج تعليمية/تدريبية تواكب متطلبات تدريس الرياضيات في العصر الرقمي، حيث تذكر بدرية محمد حسن (2002، 5-7) أن العصر الحالي يُسمى بالعصر الرقمي، ويتم بغيرات كبيرة، تتمثل في ظهور علوم ومهن مختلفة، وتمثل هذه التطورات تحديات كبيرة بالنسبة للتعليم، حيث ظهرت أنماط تعلم جديدة قائمة على توظيف التكنولوجيا، مثل التعليم عبر الإنترنت، التعليم باستخدام بيئات الواقع الافتراضي، وإنه في ظل العصر الرقمي زادت مسؤوليات المعلم، حيث يدرس كل طالب وفقاً لمستوى ذكائه، وبأسلوبه المفضل في التعليم، وبالتالي يجب تطوير العملية التعليمية من خلال التخطيط بعيد المدى، واستشراف المستقبل في ضوء متطلبات العصر الرقمي.

ويذكر عبيد مرزعل الحربي (2002، 140-42) أن التدريس في العصر الرقمي يعتمد على الأدوات الرقمية في تقديم المحتوى التعليمي، وما يتضمنه من أنثة ومهارات واهتمامات وغيرها، ويركز على استخدام التقنية في التواصل بين المعلمين وطلابهم، سواء بشكل متزامن أو غير متزامن، وأن متطلبات التدريس الرقمي تعد أحد الكفاحات التدريسية المهمة، لكونها تسبب التواصل والتفاق بين المعلم وطلابه، وبين المتعلمين وبعضهم البعض، وتتيح للمتعلمين فرص تعليمية تقوم على الإبداع عند استخدام الأدوات التكنولوجية، وتقديم المحتوى التعليمي مدعوم بالصوت والصوره وغيرها من الوسائل المشوقة؛ مما يعني الفرصة للمعلم ليكون موجه ومرشد ومثير، وتتعدد الكفاحات اللازمة لمعلم الرياضيات في العصر الرقمي، حيث تذكر سوزان أحمد بدر (2022، 155) أن من أهم الكفاحات اللازمة للمعلم في العصر الرقمي: القدرة على استخدام الأدوات التكنولوجية في تصميم وتنفيذ البرامج التعليمية.
تتطلب هذه المهارة أن يكون المعلم قادرًا على: التعامل مع أنظمة إدارة التعليم (Learning Management System) مثل Black board – Google Classroom – Zoom – Google meet Microsoft Teams لتدريس الرياضيات عبر الإنترنت باستخدام الأدوات الإلكترونية ومنها:

- Quizzes
- Portfolios – Google forms
-硝ٙٓ١خٍحص حٓظويحَ حٌفٜٛي حلافظَحٟ١ش، رَِـ١خص حٌظ٘غ١ً ٚحٌٛٓخث٢ حٌّظؼيىس،
- وفخ٠خص حٓظويحَ ٗزىش حلأظَٔض فٟ حٌؼٍّ١ش حٌظيٍ٠ٔ١ش ٚحٌظؼخًِ ِؼخ٠١َ ِّخٍٓش ِٕٙش حٌظيٍ٠ْ، ٚططٛ٠َ حٌّٕخ٘ؾ حٌيٍحٓ١ش
- ﺮزا٘١ش وَٚٔخ، ٚثبٌشغُ ِٓ أّ٘١خ حِظلان حٌّؼٍُ ٌّٙخٍحص حٌؼَٜ حٌَلّٟ؛ الا
- ؤمً حٌّؼَفش ِٓ هلاي حٌٛٓخث٢ حلإٌىظَٚٔ، ٚػَٝ حٌّلظٜٛ رطَق ٚحٓظَحط١ـ١خص ػَٜ٠ش ِٕخٓزش ٌٍفجش حٌّٔظٙيفش
- ِٓ حٌّظؼٍّ١ٓ. ٚظطٍذ أْ ٠ىْٛ ٍِّخً رخٌّٔظليػخص حٌظىٌٕٛٛؿ١ش ٚططز١مخطٙخ حٌّوظٍفش، ٚو١ف١ش حٌظؼخًِ ِغ حٌّمٍَحص حلإٌىظَٚٔ، ِٚخ طظ٠ّٕٗ ِٓ ٚٓخث٢ طفخػٍ١ش، ٌٚي٠ش حٌميٍس ػٍٝ حٌظؼخًِ ِغ حٌفٜٛي حلافظَحٟ١ش، ٚحلاٌّخَ رٛٓخثً حٌظمٛ٠ُ حلإٌىظَٚٔ، ٚٔمً حٌّؼَفش ِٓ هلاي حٌٛٓخث٢ حلإٌىظَٚٔ١ش، ٌٍفجش حٌّٔظٙيفش
- ِٓ حٌّظغ١َحص حٌطخٍثش ػٍٝ حٌّـظّغ، ِٚٓ أِؼٍظٙخ أُ حٌرلاٛحص حِظلا٘١ش.

ويركز عدد مزعزع من متطلبات تدريس الرياضيات لـ المعلم الرقمي: مهارات استخدام الحاسوب والإنترنت، التعامل مع المصادر الإلكترونية، الكتب والملفات الصوتية، استخدام برامج التشغيل والوسائط المتعددة، انضمام شبكة الإنترنت في العملية التدريسية والتعاون معها، أثرًا الماديات التعليمية باستخدام الأدوات التكنولوجية السمعية والبصرية، وذكر محمد حسن

٤٢٧٤(٢٢) أن إعداد المعلم في العصر الرقمي يتطلب أن يكون ملماً بالمعلومات التكنولوجية وتطبيقها المختلفة، وكيفية التعامل مع الموارد الإلكترونية، وما تتضمنه من وسائط تفاعلية، ولدعة القدرة على التعامل مع الفصول الافتراضية، والفلسفة في تدريس الرياضيات على الإنترنت، وعوامل الفصول الاستراتيجية عصرية مناسبة للفئة المستهدفة من المتعلمين.

ونظرًا لأهمية إعداد المعلم الرقمي فقد عدت العديد من المؤتمرات والملتقيات التربوية، منها: مؤتمر كلية التربية بسوهاج جامعة سوهاج بعنوان "المعلم ومعلومات العصر الرقمي ممارسات وتحديات"، وقد أوصى المؤتمر بضرورة تضمين شهادة المعلم الرقمي كأحد معايير ممارسة مهنة التدريس. تطوير المناهج الدراسية بمرحلتي التعليم قبل الجامعي والجامعي بما يتناسب مع متطلبات العصر الرقمي وتطوير مقرر كلية التربية لتناسب مع العصر الرقمي وتدريب المعلمين عليها

(بيسي مصطفى السيد، ٢٠٢٠، ٤٥).

يتضح مما سبق أن إعداد معلم الرياضيات في ضوء متطلبات التدريس في العصر الرقمي ضرورة من خلال فرضها التطورات التكنولوجية، والتوزيع في استعمال الإنترنت، والتوسع في استعمال التكنولوجيا الراسخة، والتغيرات الطارئة على المجتمع، ومن أمثلتها أزمة جائحة كورونا، وبالرغم من أهمية امتلاك المعلم لمهارات العصر الرقمي؛ إلا أن بعض الدراسات أشارت إلى قصور برامج إعداد المعلمين في تنمية تلك المهارات؛ حيث تشير دراسة رشا هاشم عبد الحميد (٢٠٢١، ١٨٩) إلى أن برامج
هناك عدد من الطرق للمعالجة للتعلم، ومنها: تعليم الذكاء الاصطناعي للتعلم من خلال تحسين الأدوات التكنولوجية في التعليم، وتعزيز مهارات التعليم الذاتي، والتعلم التعاوني، مما يعكس بصورة إيجابية على جميع عناصر العملية التعليمية (عالية أحمد صالح وآخرون، 2001، 2021).

وفيما يتعلق بالwieb التشاركية، هناك عدة طرق للمعالجة للتعلم من خلال تحسين الأدوات التكنولوجية في التعليم، وتعزيز مهارات التعليم الذاتي، والتعلم التعاوني، مما يعكس بصورة إيجابية على جميع عناصر العملية التعليمية (عالية أحمد صالح وآخرون، 2001، 2021).

وتعتبر برامج الويب التشاركية من أبرز التطورات التكنولوجية التي تشهد القرن الحادي والعشرين، تهدف إلى مساعدة المتعلم في إعداد المواد التعليمية، وزيادة فاعلية كل من المعلم والمتعلم؛ من خلال تعزيز مهارات التعليم الذاتي، والتعلم التعاوني، مما يعكس بصورة إيجابية على جميع عناصر العملية التعليمية (عالية أحمد صالح وآخرون، 2001، 2021).

وتعتبر برامج الويب التشاركية من أبرز التطورات التكنولوجية التي تشهد القرن الحادي والعشرين، تهدف إلى مساعدة المتعلم في إعداد المواد التعليمية، وزيادة فاعلية كل من المعلم والمتعلم؛ من خلال تعزيز مهارات التعليم الذاتي، والتعلم التعاوني، مما يعكس بصورة إيجابية على جميع عناصر العملية التعليمية (عالية أحمد صالح وآخرون، 2001، 2021).

وتعتبر برامج الويب التشاركية من أبرز التطورات التكنولوجية التي تشهد القرن الحادي والعشرين، تهدف إلى مساعدة المتعلم في إعداد المواد التعليمية، وزيادة فاعلية كل من المعلم والمتعلم؛ من خلال تعزيز مهارات التعليم الذاتي، والتعلم التعاوني، مما يعكس بصورة إيجابية على جميع عناصر العملية التعليمية (عالية أحمد صالح وآخرون، 2001، 2021).

وتعتبر برامج الويب التشاركية من أبرز التطورات التكنولوجية التي تشهد القرن الحادي والعشرين، تهدف إلى مساعدة المتعلم في إعداد المواد التعليمية، وزيادة فاعلية كل من المعلم والمتعلم؛ من خلال تعزيز مهارات التعليم الذاتي، والتعلم التعاوني، مما يعكس بصورة إيجابية على جميع عناصر العملية التعليمية (عالية أحمد صالح وآخرون، 2001، 2021).

وتعتبر برامج الويب التشاركية من أبرز التطورات التكنولوجية التي تشهد القرن الحادي والعشرين، تهدف إلى مساعدة المتعلم في إعداد المواد التعليمية، وزيادة فاعلية كل من المعلم والمتعلم؛ من خلال تعزيز مهارات التعليم الذاتي، والتعلم التعاوني، مما يعكس بصورة إيجابية على جميع عناصر العملية التعليمية (عالية أحمد صالح وآخرون، 2001، 2021).

وتعتبر برامج الويب التشاركية من أبرز التطورات التكنولوجية التي تشهد القرن الحادي والعشرين، تهدف إلى مساعدة المتعلم في إعداد المواد التعليمية، وزيادة فاعلية كل من المعلم والمتعلم؛ من خلال تعزيز مهارات التعليم الذاتي، والتعلم التعاوني، مما يعكس بصورة إيجابية على جميع عناصر العملية التعليمية (عالية أحمد صالح وآخرون، 2001، 2021).

وتعتبر برامج الويب التشاركية من أبرز التطورات التكنولوجية التي تشهد القرن الحادي والعشرين، تهدف إلى مساعدة المتعلم في إعداد المواد التعليمية، وزيادة فاعلية كل من المعلم والمتعلم؛ من خلال تعزيز مهارات التعليم الذاتي، والتعلم التعاوني، مما يعكس بصورة إيجابية على جميع عناصر العملية التعليمية (عالية أحمد صالح وآخرون، 2001، 2021).

وتعد برامج الويب التشاركية من أبرز التطورات التكنولوجية التي تشهد القرن الحادي والعشرين، تهدف إلى مساعدة المتعلم في إعداد المواد التعليمية، وزيادة فاعلية كل من المعلم والمتعلم؛ من خلال تعزيز مهارات التعليم الذاتي، والتعلم التعاوني، مما يعكس بصورة إيجابية على جميع عناصر العملية التعليمية (عالية أحمد صالح وآخرون، 2001، 2021).

وتعتبر برامج الويب التشاركية من أبرز التطورات التكنولوجية التي تشهد القرن الحادي والعشرين، تهدف إلى مساعدة المتعلم في إعداد المواد التعليمية، وزيادة فاعلية كل من المعلم والمتعلم؛ من خلال تعزيز مهارات التعليم الذاتي، والتعلم التعاوني، مما يعكس بصورة إيجابية على جميع عناصر العملية التعليمية (عالية أحمد صالح وآخرون، 2001، 2021).

وتعد برامج الويب التشاركية من أبرز التطورات التكنولوجية التي تشهد القرن الحادي والعشرين، تهدف إلى مساعدة المتعلم في إعداد المواد التعليمية، وزيادة فاعلية كل من المعلم والمتعلم؛ من خلال تعزيز مهارات التعليم الذاتي، والتعلم التعاوني، مما يعكس بصورة إيجابية على جميع عناصر العملية التعليمية (عالية أحمد صالح وآخرون، 2001، 2021).

وتعد برامج الويب التشاركية من أبرز التطورات التكنولوجية التي تشهد القرن الحادي والعشرين، تهدف إلى مساعدة المتعلم في إعداد المواد التعليمية، وزيادة فاعلية كل من المعلم والمتعلم؛ من خلال تعزيز مهارات التعليم الذاتي، والتعلم التعاوني، مما يعكس بصورة إيجابية على جميع عناصر العملية التعليمية (عالية أحمد صالح وآخرون، 2001، 2021).

وتعد برامج الويب التشاركية من أبرز التطورات التكنولوجية التي تشهد القرن الحادي والعشرين، تهدف إلى مساعدة المتعلم في إعداد المواد التعليمية، وزيادة فاعلية كل من المعلم والمتعلم؛ من خلال تعزيز مهارات التعليم الذاتي، والتعلم التعاوني، مما يعكس بصورة إيجابية على جميع عناصر العملية التعليمية (عالية أحمد صالح وآخرون، 2001، 2021).

وتعد برامج الويب التشاركية من أبرز التطورات التكنولوجية التي تشهد القرن الحادي والعشرين، تهدف إلى مساعدة المتعلم في إعداد المواد التعليمية، وزيادة فاعلية كل من المعلم والمتعلم؛ من خلال تعزيز مهارات التعليم الذاتي، والتعلم التعاوني، مما يعكس بصورة إيجابية على جميع عناصر العملية التعليمية (عالية أحمد صالح وآخرون، 2001، 2021).

وتعد برامج الويب التشاركية من أبرز التطورات التكنولوجية التي تشهد القرن الحادي والعشرين، تهدف إلى مساعدة المتعلم في إعداد المواد التعليمية، وزيادة فاعلية كل من المعلم والمتعلم؛ من خلال تعزيز مهارات التعليم الذاتي، والتعلم التعاوني، مما يعكس بصورة إيجابية على جميع عناصر العملية التعليمية (عالية أحمد صالح وآخرون، 2001، 2021).

وتعد برامج الويب التشاركية من أبرز التطورات التكنولوجية التي تشهد القرن الحادي والعشرين، تهدف إلى مساعدة المتعلم في إعداد المواد التعليمية، وزيادة فاعلية كل من المعلم والمتعلم؛ من خلال تعزيز مهارات التعليم الذاتي، والتعلم التعاوني، مما يعكس بصورة إيجابية على جميع عناصر العملية التعليمية (عالية أحمد صالح وآخرون، 2001، 2021).

وتعد برامج الويب التشاركية من أبرز التطورات التكنولوجية التي تشهد القرن الحادي والعشرين، تهدف إلى مساعدة المتعلم في إعداد المواد التعليمية، وزيادة فاعلية كل من المعلم والمتعلم؛ من خلال تعزيز مهارات التعليم الذاتي، والتعلم التعاوني، مما يعكس بصورة إيجابية على جميع عناصر العملية التعليمية (عالية أحمد صالح وآخرون، 2001، 2021).

وتعد برامج الويب التشاركية من أبرز التطورات التكنولوجية التي تشهد القرن الحادي والعشرين، تهدف إلى مساعدة المتعلم في إعداد المواد التعليمية، وزيادة فاعلية كل من المعلم والمتعلم؛ من خلال تعزيز مهارات التعليم الذاتي، والتعلم التعاوني، مما يعكس بصورة إيجابية على جميع عناصر العملية التعليمية (عالية أحمد صالح وآخرون، 2001، 2021).

وتعد برامج الويب التشاركية من أبرز التطورات التكنولوجية التي تشهد القرن الحادي والعشرين، تهدف إلى مساعدة المتعلم في إعداد المواد التعليمية، وزيادة فاعلية كل من المعلم والمتعلم؛ من خلال تعزيز مهارات التعليم الذاتي، والتعلم التعاوني، مما يعكس بصورة إيجابية على جميع عناصر العملية التعليمية (عالية أحمد صالح وآخرون، 2001، 2021).

وتعد برامج الويب التشاركية من أبرز التطورات التكنولوجية التي تشهد القرن الحادي والعشرين، تهدف إلى مساعدة المتعلم في إعداد المواد التعليمية، وزيادة فاعلية كل من المعلم والمتعلم؛ من خلال تعزيز مهارات التعليم الذاتي، والتعلم التعاوني، مما يعكس بصورة إيجابية على جميع عناصر العملية التعليمية (عالية أحمد صالح وآخرون، 2001، 2021).

وتعد برامج الويب التشاركية من أبرز التطورات التكنولوجية التي تشهد القرن الحادي والعشرين، تهدف إلى مساعدة المتعلم في إعداد المواد التعليمية، وزيادة فاعلية كل من المعلم والمتعلم؛ من خلال تعزيز مهارات التعليم الذاتي، والتعلم التعاوني، مما يعكس بصورة إيجابية على جميع عناصر العملية التعليمية (عالية أحمد صالح وآخرون، 2001، 2021).

وتعد برامج الويب التشاركية من أبرز التطورات التكنولوجية التي تشهد القرن الحادي والعشرين، تهدف إلى مساعدة المتعلم في إعداد المواد التعليمية، وزيادة فاعلية كل من المتعلم و
مجلة تربويات الرياضيات – المجلد (22) العدد (5) - يوليو 2023م الجزء الثاني

والنماذج المحاكاة، مما سبق توضح أهمية تنمية مهارات استخدام البرمجيات الديناميكية، والعوائق التقنية لدى الطلاب معلمي الرياضيات؛ لذا جاء البحث الحالي، حيث يقدم برنامجاً مقتراحاً في ضوء متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية لتنمية مهارات استخدام برامج الرياضيات الديناميكية والمحتوى التكنولوجي لدى الطلاب معلمي الرياضيات بكلية التربية.

الإحساس بمشكلة البحث:

بالرغم من أهمية تنمية مهارات استخدام البرمجيات الديناميكية في تدريس الرياضيات، والمحتوى التكنولوجي لدى الطلاب معلمي الرياضيات، وأن كثير من الدراسات والبحث أوصت بضرورة تنمية لدى الطلاب معلمي الرياضيات، إلا أن هناك ضعفاً في مهارة استخدام برامج الرياضيات الديناميكية في تدريس الرياضيات، والمحتوى التكنولوجي لدى الطلاب معلمي الرياضيات، وقد أضح ذلك من خلال:

1. ملاحظات الباحث:

من خلال عمله بكلية التربية؛ والإشراف على طلاب التربية العملية شعبة الرياضيات، وحضور بعض حصص الرياضيات لمعلمي الرياضيات؛ لاحظ الباحث عزوف معلمي الطلاب معلمي الرياضيات عن دمج التكنولوجيا في تدريس الرياضيات، وأنهم يترددون في استخدام الأدوات الرقمية، وإن محاولات استخدامها تقتصر على استخدام جهاز عرض البيانات (Data Show)، وعمل عروض تقديمية للدرس، ويحتاج إلى بعض تحسن في استخدام الأدوات الرقمية، وعدم استخدام برامج الرياضيات الديناميكية، بالرغم من احتراء المعلمين على أنوشة تعتد على توظيف برامج جيوجرافيا (مثل: استخدام البرامج الرسومية في دراسة خواص الدوال، البرمجة الخطية، والحل الأمثل)، وبسأله عن أسابيع ذلك؛ أشارت إجاباتهم إلى عدم استخدامهم في الأمثل، لإظهار مهارات التعامل معها، وعدم وجود برامج تدريبية لهم على استخدام تلك البرامج، كما أشار بعض منهم إلى عدم جدوى هذه الأدوات في تعلم الرياضيات.

وبالرغم من أن كليات التربية تقوم بدور كبير في تحديث لوحات إعداد المعلمين قبل الخدمة لكي يمتلك الخريج مهارات القرن الحادي والعشرين. إلا أن الواقع التعليمي يشير إلى ضعف مستوى الخروج للكليات التربية، وقد ظهر ذلك جلياً في نتائج اختبارات وزارة التربية والتعليم لجامعة معلم فصل العام 2022م، حيث أشارت النتائج إلى أنه تقدم لأداء الاختبار 5024 متقدماً من تنطبق عليهم الشروط، واجتازتهم منهم 1453 متقدماً، أي بنسبة منوية (12.1%)، وتشير هذه النسبة إلى
ضف مخرجات كلات التربية، وعدم مواكبتها لمتطلبات المناهج المطورة، ومن أهمها توظيف المستحدثات التكنولوجية (ياسمين بدوي، 2022).

2- نتائج الدراسات السابقة التي تطرقت إلى استخدام برمجيات الرياضيات الديناميكية في تدريس الرياضيات.

كما توصلت دراسة محمد عبد الله النذر (2014) إلى أن أهم المعرفات التي تجول دون استخدام برمجيات الرياضيات الديناميكية (برمجية GeoGebra) في تدريس الرياضيات من وجهة نظر المعلمين هو عدم تدريبيهم على هذه المهارات، ووضع معرفاتهم في استعمالها، وتوصلت دراسة إبراهيم الحسين خليل وأحمد زايد آل سعود (2016) إلى أن أهم المعرفات التي تواجه معلماء الرياضيات عند استخدام برمجيات الرياضيات الديناميكية (برمجية Geometer’s Sketchpad) في تدريس الرياضيات من وجهة نظرهم هي عدم توفير برامج تدريبية لتدريب على استخدام البرمجية في تعليم الرياضيات.

3- نتائج البحوث والدراسات السابقة التي تطرقت إلى معتقدات الطلاب معملي الرياضيات نحو استخدام التكنولوجيا في التدريس:

أشارت نتائج كثير من الدراسات إلى امتلاك الطلاب معملي الرياضيات لبعض المعتقدات السلبية نحو دمج التكنولوجيا في التدريس، حيث أظهرت دراسة هودا محمد سيد (2022) وجود معتقدات سلبية تجاه توظيف التكنولوجيا التفاعلية في تدريس الرياضيات لدى الطلاب المعلمين، مثل: الرياضيات مادة حافة يصعب دمج
الجودة (1) نتائج التطبيق الاستكشفي لاختبار مهارات برمجيات الرياضيات الديناميكية

<table>
<thead>
<tr>
<th>عدد الطلاب</th>
<th>فئة الدرجات</th>
<th>الدورة الكلية</th>
</tr>
</thead>
<tbody>
<tr>
<td>24%</td>
<td></td>
<td>GSP</td>
</tr>
<tr>
<td>17%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

يتضح من النتائج المتضمنة في جدول (1) أن (28) طالب وبونسبة موية (26%) حصلوا على درجات أقل من 50 في البداية الخاص بمهارات استخدام برمجيات GSP، وأن (20) طالب وبونسبة موية (18%) حصلوا على درجات أقل 50% في برنامج GeoGebra.
البعد الخاص بمهارات استخدام برنامج جيوجرلا، كما يتضح من الجدول نفسه أن (34) طالب ونسبة مئوية (76%) حصلوا على أقل من 50% لاختبار مهارات استخدام برامج الرياضيات الديناميكية ككل، مما يوضح أن هناك انخفاضاً ملحوظاً في مستوى هؤلاء الطلاب في مهارات استخدام برامج الرياضيات الديناميكية (GeoGebra, GSP). (برنامج جيوجرلا)

- أجرى الباحث مقابلة (ملحق 3) مع مجموعة من الطلاب معلم الرياضيات، بلغ عددها (100) طالب معلم بالفرقة الرابعة بكلية التربية. جامعة سوهاج، من خارج مجموعة البحث الأساسية، لتحديد درجة معرفتهم بمهارات استخدام بعض برامج الرياضيات الديناميكية مثل: GeoGebra، Sketchpad ليس لديهم معرفة برامج الرياضيات الديناميكية، وكيفية استخدامها في تدريس الرياضيات، وقلة خبرتهم، وعدم تدريبيهم على هذه البرمجيات، وأنه لم يتم تدريس برامج الرياضيات الديناميكية في أي مقرر من مقررات اعدادهم بكلية التربية، ولم يقلوا أي نوع من أنواع التدريب على استخدام البرامج التفاعلية في تعلم الرياضيات.

- تطبيق مقياس معتقدات الطلاب معلم الرياضيات نحو استخدام التكنولوجيا في التدريس، على مجموعة من الطلاب بالفرقة الرابعة – شعبة رياضيات، بلغ عددها (100) طالب معلم، خارج مجموعة البحث الأساسية، وتم حساب المتوسط المرجح والانحراف المعياري والوزن النسبى لاستجابات الطلاب على أبعاد مقياس المعتقدات التكنولوجية، وكانت النتائج كما هو موضح في جدول (2)

جدول (2): نتائج التطبيق الاستكشافي لمقياس المعتقدات التكنولوجية للطلاب معلم الرياضيات

<table>
<thead>
<tr>
<th>المعتقدات حول ...</th>
<th>المراجع المتوسط</th>
<th>الانحراف المعياري</th>
<th>النسبة المئوية</th>
<th>درجة التوفر</th>
</tr>
</thead>
<tbody>
<tr>
<td>استخدام التكنولوجيا</td>
<td>2.95</td>
<td>0.42</td>
<td>58.97%</td>
<td>متوسطة</td>
</tr>
<tr>
<td>فوائد التكنولوجيا في تعليم الرياضيات</td>
<td>2.40</td>
<td>0.39</td>
<td>47.94%</td>
<td>قليلة</td>
</tr>
<tr>
<td>تأثير التكنولوجيا على دور المعلم</td>
<td>2.25</td>
<td>0.50</td>
<td>44.96%</td>
<td>قليلة</td>
</tr>
<tr>
<td>القدرة على استخدام التكنولوجيا</td>
<td>1.88</td>
<td>0.28</td>
<td>37.57%</td>
<td>قليلة</td>
</tr>
<tr>
<td>دور التكنولوجيا في تقويم الرياضيات</td>
<td>2.17</td>
<td>0.51</td>
<td>43.45%</td>
<td>قليلة</td>
</tr>
<tr>
<td>دورة التكنولوجيا جد</td>
<td>1.71</td>
<td>0.30</td>
<td>34.27%</td>
<td>قليلة</td>
</tr>
<tr>
<td>الدورة التكنولوجيا ككل</td>
<td>2.263</td>
<td>0.43</td>
<td>44.53%</td>
<td>قليلة</td>
</tr>
</tbody>
</table>

يتضح من جدول (2) أن المتوسطات الحسابية المرجحة لأبعاد مقياس المعتقدات التكنولوجية للطلاب معلم الرياضيات تراوحت بين (1.71 - 2.95)، وأن المعتقدات على المقياس ككل بلغت (2.263)، وهو يقابل التقدير بدرجة قليلة، كما يلاحظ أن أغلب معتقدات أفراد المجموعة الاستكشافية تجاه توظيف التكنولوجيا في تعليم
الرياضيات وتعلمها كانت منخفضة، من خلال ذلك؛ يخلص الباحث إلى ضعف مستوى المعتقدات التكنولوجيا لدى الطلاب ملمعى الرياضيات.

وتايم هذا النتائج إلى ضعف مهارات استخدام برمجيات الرياضيات الديناميكية، والمعتقدات التكنولوجيا لدى الطلاب ملمعى الرياضيات؛ مما يؤكد الحاجة إلى إجراء البحث الحالي.

مشكلة البحث:

في ضوء ما سبق تمثلت مشكلة البحث الحالي في: ضعف مهارات استخدام برمجيات الرياضيات الديناميكية، والمعتقدات السلبية تجاه دمج التكنولوجيا في تعليم الرياضيات وتعلمها لدى الطلاب ملمعى الرياضيات؛ لذا يحاول البحث الحالي بناء برنامج مقترح في ضوء متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية لتنمية مهارات استخدام برمجيات الرياضيات الديناميكية

المعتقدات التكنولوجية لدى الطلاب الملمعى بكلية التربية.

أسئلة البحث:

للتصدي لمشكلة البحث حاول البحث الحالي الإجابة عن الأسئلة الآتية:

1- ما مهارات استخدام برمجيات الرياضيات الديناميكية اللازمة لطلاب الملمعى بكلية التربية؟

2- ما البرنامج المقترح القائم على متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية لتنمية مهارات استخدام البرمجيات الديناميكية والمعتقدات التكنولوجية لدى الطلاب الملمعى بكلية التربية؟

3- ما فاعلية البرنامج المقترح القائم على متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية في تنمية الجوانب المعنية للمهارات استخدام البرمجيات الديناميكية لدى الطلاب الملمعى بكلية التربية؟

4- ما فاعلية البرنامج المقترح القائم على متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية في تنمية الجوانب الأدائية للمهارات استخدام البرمجيات الديناميكية لدى الطلاب الملمعى بكلية التربية؟

5- ما فاعلية البرنامج المقترح القائم على متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية في تنمية المعتقدات التكنولوجية لدى الطلاب الملمعى بكلية التربية؟

أهداف البحث:

1- وصف مهارات استخدام برمجيات الرياضيات الديناميكية اللازمة للطلاب الملمعى بكلية التربية.
4- وصف مطالب تدريس الرياضيات في العصر الرقمي اللازمة للطلاب المعلمين بكلية التربية.

5- تفسير أسباب ضعف مهارات استخدام برامج الرياضيات الدينيمانيكية لدى الطلاب المعلمين بكلية التربية.

4- تفسير أسباب ضعف معتقدات الطلاب المعلمين بكلية التربية نحو دمج التكنولوجيا في تعليم الرياضيات وتعليمها.

5- وصف البرنامج المقترح القائم على متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية، كأحد الاتجاهات لتنمية مهارات استخدام البرمجيات الدينيمانيكية والمعتقدات التكنولوجية لدى الطلاب المعلمين بكلية التربية.

6- التنبيء بفاعلية البرنامج المقترح القائم على متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية في تنمية الجوانب المعرفية لمهارات استخدام البرمجيات الدينيمانيكية لدى المعلمين بكلية التربية.

7- التنبيء بفاعلية البرنامج المقترح القائم على متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية في تنمية الجوانب الأدائية لمهارات استخدام البرمجيات الدينيمانيكية لدى المعلمين بكلية التربية.

8- التنبيء بفاعلية البرنامج المقترح القائم على متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية في تنمية المعتقدات التكنولوجية لدى المعلمين بكلية التربية.

أهمية البحث: قد يفيد البحث الحالي كلاً من:

1- معلمي الرياضيات / الطلاب المعلمين بشعبية الرياضيات: من خلال تعميق وعهم بأهمية البرمجيات الدينيمانيكية في تدريس الرياضيات، الارتقاء بمستوى مهارات استخدام البرمجيات الدينيمانيكية لديهم؛ مما يؤهلهم لتغدرس مناهج الرياضيات المطورة، ويسهم من أدائهم داخل الغرف الصفية، الاستفادة من تطبيقات الويب التشاركية في بناء مجتمعات التعلم الإلكترونية، بما يسهم في تحقيق النمو المهني المستمر لديهم.

2- المسؤولين عن إعداد وتطوير برامج اعداد معلم الرياضيات، من خلال توجيه اهتمامهم نحو إعداد معلم الرياضيات الرقمي، وتوظيف تطبيقات الويب التشاركية في برامج الإعداد بكليات التربية.

3- الباحثين في مجال المناهج وطرق تدريس الرياضيات: تقديم مجموعة من المقترحات والدراسات المستقبلية، والتي تفتح مجالات لبحث أخرى، وإجراء
البحث للكشف عن مدى فاعلية استخدام تطبيقات الويب التشاركية في تحقيق أهداف تعليم الرياضيات بمراحل التعليم المختلفة.

- يستمد البحث أهميته من أهمية متغيراته وعينته، والمتمثلة في:
 - برنامج مقترح قائم على متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية (متغير مستقل)، مهارات استخدام البرمجيات الديناميكية بشفهي المعرفة والأدائي (متغيرات تابعة)، المعتقدات التكنولوجية.
 - الطلاب معلم الرياضيات: باعتبارهم معلم المستقبلي، ومدى تمكنهم من مهارات استخدام البرمجيات الديناميكية.

حدود البحث:

1- تم تنفيذ موضوعات البرنامج باستخدام تطبيقات الويب التشاركية الآتية: مدونات التعليمية، منصة Microsoft Teams، مشاكل مواجهة الفيديو، WhatsApp (تطبيق YouTube)، شبكة التواصل الاجتماعي، Google drive، مشاركة المستندات عبر تطبيق Facebook، استخدامها، وألفة الطلاب معلم الرياضيات (مجموعة البحث) بها.

2- اقتصرت مجموعة البحث على طلاب الفرقة الرابعة شعبة الرياضيات بكلية التربية، جامعة سوهاج؛ نظرا لأنهم على مشاركة التخرج والاحترام لعملهم كمعلم الرياضيات؛ وبالتالي فإن ذلك قد يحقق أكبر استفادة ممكنة لهم في تنفيذ برامج الرياضيات المطورة.

3- تنمية الجوانب المعرفية والأدائية لمهارات استخدام برنامجي GeoGebra والبرامج الهندسي GeoGebra GSP، وذلك اختبار الباحث هانان البرمجيات لأن إمكان استخدام البرنامجين في كافة المراحل الدراسية وحتى الجامعة، ولهما تطبيقات متنوعة من مناهج الرياضيات المطورة، ويمكن تحميلهما واستخدامهما على أي جهاز وفي أي وقت، وجود نسخة متفجرة من GeoGebra، برمجة GeoGebra حصريًا على العديد من الجوائز العالمية، حصلت برامجها على الجائزة الأمريكية والورثوية والفرنسية والألمانية للبرامج التعليمية.

4- طبق البرنامج المفترض خلال الفصل الدراسي الثاني، للعام الجامعي 2022-2023.

47
مواد وأدوات البحث

1. مواد البحث:
 - قائمة مهارات استخدام البرمجيات الديناميكية اللازمة للطفل معلم الرياضيات.
 - قائمة متطلبات تطوير الرياضيات في العصر الرقمي اللازمة للطفل معلم الرياضيات.
 - برنامج مقترح قائم على متطلبات تطوير الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية للطفل معلم الرياضيات (دليل المعلم، دليل المتعلم).

2. أدوات القياس:
 - اختبار تحصيل الجوانب المعرفية لمهارات استخدام البرمجيات الديناميكية.
 - مقياس القدرات التكنولوجية للطفل معلم الرياضيات.

منهج البحث وتصميمه التجريبي:

اعتمد البحث على المنهج التجريبي، القائم على التصميم شبه التجريبي، ذو المجموعة الواحدة، ذات القياسين القلبي والعدي، ويتم مقارنة أداء الطلاب في التطبيق القلبي والبعدي، كذلك مقارنة أداء الطلاب في التطبيق البعدي بقيمة مستوى التمكين 80%.

متغيرات البحث:

- المتغيرات الأصلية:
 - المتغير المستقل: البرنامج المقترح القائم على متطلبات تطوير الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية.

- المتغيرات المتتابعة: تمثل المتغيرات التابعة في هذا البحث فيما يأتي:
 - الجوانب المعرفية لمهارات استخدام البرمجيات الديناميكية.
 - الجوانب الأدائية لمهارات استخدام البرمجيات الديناميكية.
 - مقياس القدرات التكنولوجية للطفل معلم الرياضيات.

تحديد مصطلحات البحث: التزام البحث بالتعرف الإجراي للمصطلحات التالية:

- متطلبات تدريس الرياضيات في العصر الرقمي:
 - تعرف إجرايا بأنها الاحتياجات المعرفية والمهارية والوجهية والتكنولوجية اللازمة.
 - لتمكين الطلاب معلم الرياضيات من التدريس بفاعلية في مجتمع العصر الرقمي، الذي يعتمد على الاستخدام الواسع لتكنولوجيا المعلومات والاتصالات في العملية التعليمية، ومن أهمها: المعرفة بمساحة تدريس الرياضيات في العصر الرقمي، مهارات توظيف برمجية الراسم الهندي (GSP) في تدريس الرياضيات، مهارات
جامعة تربية الرياضيات – المجلد (26) العدد (5) - يوليو 2023م الجزء الثاني

49

توظيف برامج جيوجبرا (GeoGebra) في تدريس الرياضيات، مهارات توظيف خدمة التخزين السحابية (جوجل درايف) في تدريس الرياضيات، مهارات توظيف تقنية اليوتيوب في تدريس الرياضيات، مهارات توظيف المدونات التعليمية في تدريس الرياضيات، مهارات تصميم الاختبارات الإلكترونية عبر الشبكة في تقويم تدريس الرياضيات.

2- تطبيقات الويب التشاركية:

تعرض إجراياً بأنها مجموعة من المواقع والخدمات والتطبيقات المتاحة عبر شبكة الإنترنت، تتيح للطلاب معلمهم الرياضيات بناء المعرفة بصورة تشاركية، والتواصل بفعالية بينهم وبين المعلم، وبينهم وبين بعضهم البعض، وتبادل الأفكار ومشاركة المصادر، ومنها: المدونات التعليمية، المنصة التشاركية (Microsoft Teams)، شبكة مشاركة مقاطع الفيديو اليوتيوب (YouTube)، تطبيق WhatsApp، Facebook للمواصلات الاجتماعي، Google drive، مشاركة المستندات عبر تطبيق Google drive، ويتم من خلالها تقديم محتوى البرنامج المفترض للطلاب معلمي الرياضيات بكلية التربية.

3- مهارات استخدام البرمجيات الديناميكية:

تعرض إجراياً بأنها قدرة الطلاب معلمهم الرياضيات على استخدام برنامج GeoGebra "جيجيرا" والرسام الهندسي "GSP" بسرعة ودقة وفهم، وذلك من خلال القدرة على: التعامل مع المهارات الأساسية، مثل: تحويل البرنامج، التعامل مع أشرطة الأدوات والقوائم، تنفيذ الإنشاءات الهندسية المختلفة، إيجاد القياسات المختلفة، مثل المحيط، والمساحة، تنفيذ التعميمات والتطبيقات الرياضية، وتقاس بالدرجة التي يحصل عليها الطالب في الاختبار التحصيلي وبطاقة الملاحظة المعدة لهذا الغرض.

4- المعتقدات التكنولوجية:

مجموعة القدرات والتصورات العقلية التي يؤمن بها الطلاب معلمهم الرياضيات بالفرقة الرابعة، والمتعلقة باستخدام التكنولوجيا في تعلم الرياضيات وتعليمها. وتشمل هذه المعتقدات معرفة الطلاب معلمهم الرياضيات، وأفكارهم، وكفاءتهم حول كيفية تكامل التكنولوجيا في التدريس، وتعزيز تعلم الطلاب، وتقاس في هذا البحث من خلال مقياس المعتقدات التكنولوجية المعد لهذا الغرض.

خطوات البحث وإجراءاته:

للإجابة عن أسئلة البحث والتحقق من صحة فرضيه تم اتباع الجزيئ

1- الاطلاع على الدراسات والأدبيات السابقة المرتبطة بتغيرات البحث (متطلبات تدريس الرياضيات في العصر الرقمي، تطبيقات الويب التشاركية، مهارات استخدام البرمجيات الديناميكية، المعتقدات التكنولوجية).
مجلة تربويات الرياضيات – المجلد (٦٦) العدد (٥) - يوليو ٢٠٢٣م الجزء الثاني

٢ - إعداد قائمة بمهارات استخدام البرمجيات الديناميكية، وعرضها على مجموعة من المحكمين، للتأكد من صدقها، وإجراء التعديلات اللازمة.

٣ - إعداد قائمة متطلبات تدريس الرياضيات في العصر الرقمي اللازمة للطلاب معلم الرياضيات.

٤ - تصميم البرنامج المقترح القائم على متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية (دليل المدرس ودليل المتدرب)، وعرضه على مجموعة من المتخصصين للتأكد من صدقه، وإجراء التعديلات اللازمة.

٥ - إعداد أدوات البحث وضبطها علمياً، وتشمل:

أ - اختيار تحصيل الجوانب المعرفية لمهارات استخدام البرمجيات الديناميكية
ب - بطاقة ملاحظة الجوانب الأدائية لمهارات استخدام البرمجيات الديناميكية
ج - مقياس المعطيات التكنولوجية.

٦ - اختيار مجموعة البحث الأساسية، وتطبيق أدوات البحث قليلاً على مجموعة البحث.

٧ - تطبيق البرنامج المقترح على مجموعة البحث.

٨ - تطبيق أدوات البحث بعدياً على مجموعة البحث.

٩ - إجراء المعالجة الإحصائية للبيانات، واستخلاص وعرض النتائج، وتفسيرها، ومناقشتها.

١٠ - تقديم التوصيات والمقترحات المناسبة في ضوء نتائج البحث.

الإطار النظري:

تنمية مهارات استخدام البرمجيات الديناميكية والمعطيات التكنولوجية في ضوء متطلبات تدريس الرياضيات في العصر الرقمي للطلاب معلم الرياضيات

المحور الأول: تدريس الرياضيات في العصر الرقمي:

أولاً: العصر الرقمي (مفهومه - خصائصه)

بعد العصر الرقمي مفهوماً حديثاً، تزامناً مع الالتفاف التكنولوجي ومجتمع المعرفة (محمد صلاح الدين سالم، ٢٠١٢، ١١)، ويشير إلى سيطرة الوسائل الرقمية الحديثة (٢٠٢٢، ٤٧) في مجال الاتصال وتبادل المعلومات (عبد مزر الحربي، ٢٠٢٣، ٤٧٧، ٤٧)، ويُعرف بأنه الفترة الزمنية التي حدث فيها تطور في تكنولوجيا الاتصال، وتغيرت الوظائف، نتيجة لانتشار الأدوات الرقمية، التي أصبح لها دور رئيس في الاتصالات والمواصلات، ومعالجة المعلومات وتبادلها (شيرين مرقص مصري، ٢٠٢٣، ٤٧٩، ٤٧)، كما يُعرَف بأنه العصر الذي يعتمد على الاستخدام الواسع لتكنولوجيا المعلومات والاتصالات، والتي تعكس على كافة مكونات العملية التعليمية، من حيث الأدوار الجديدة للمعلم في
العصر الرقمي، واستراتيجيات التعليم والتعلم، وطرق عرض المحتوى التعليمي للمتعلمين، وطرق تقييمهم في ضوء استخدام التقنيات الرقمية (مرور بكر مختار، 2021).

ويتسم العصر الرقمي بالعديد من الخصائص، التي أشارت إليها عدد من الأدبيات مثل: محمد علي حاجي (2022، 1، 8-07-2022)، إسلام عبد الرازق حداد، وآخرون (2022، 46، 2، 31). وهي:

١- الالنهاج المعرفي والتكنولوجي، والاستعمال المتزايد للأدوات التكنولوجية، مثل الحاسوب، الإنترنت، الأجهزة اللوحية، حيث يُعد توظيف تقنية المعلومات والإنترنت في التعليم من أهم مصادر التحول للعصر الرقمي.

٢- تركز عينة التعليم في العصر الرقمي على تكوين شبكات مجتمع المعلومات، حيث يتم تشارك الاهتمامات والممارسات والمعتقدات بين أعضاء هذه الشبكات.

٣- المتعلم على اتصال دائم بشبكة الإنترنت من خلال الحاسوب والأجهزة اللوحية Facebook، WhatsApp، YouTube.

٤- مجمع العصر الرقمي مجتمع تقني متغير، يؤمن بالمعرفة وابتكارها وامتلاكها، أما ما يميز العصر الرقمي، مجتمع متعدد الأبعاد، مجتمع رأس المال الفكري، مجتمع دائم التعلم (محمد صلاح الدين سالم، 2018، 11).

ثانياً: تعليم الرياضيات في العصر الرقمي

يعتمد تعليم الرياضيات في العصر الرقمي على توظيف التكنولوجيا بصورة متكاملة في العملية التعليمية، وتوفر بيئة تشجع على الإبداع والإبداعيات التفاعل بين عناصر العملية التعليمية، مما ينتج للمتعلم الأخلاقية بفاعلية في التعلم (محمد علي حاجي، 2022، 1، 8-07-2022)، وتستند فلسفة تعليم الرياضيات في العصر الرقمي على مجموعة من المركزات من أهمها (مرور بكر مختار، 2021، 2012، 1-12).

١- تفريع التعليم: وذلك من خلال توفير مواقف تعلمية تناسب قدرات واستعدادات المتعلمين وخبراتهم السابقة، باستخدام الأدوات التكنولوجية والوسائط المتعددة.

٢- التفاعلية: توفر الأدوات التكنولوجية بيئة تشجع المتعلمين على المشاركة والتفاعل مع المحتوى التعليمي بطريقة إيجابية، وعرض المحتوى العلمي، واختيار ما يناسب وفق سرعتهم الخاصة أثناء التعلم.

٣- التنوع: تركز الممارسات التعليمية في العصر الرقمي على توفير مجموعة من الخيارات التعليمية أمام المتعلم، بحيث يجد فيها كل متعلم ما يناسبه.

٤- الكونية: تتوفر الأدوات التكنولوجية الوصول إلى مصادر المعلومات من أي مكان، ودون التقيد بحجرات الدراسة.
ويذكر حسين طه (2011، 57) أن التعلم في العصر الرقمي يتسامى بمجموعة من الخصائص، من أهمها:

1. تنوع المصادر: حيث يتعامل المتعلم مع كم هائل من المعلومات، والتي تتطلب قدرة كبيرة على الربط فيما بينها، وتكوين أفكار مترابطة ومتجانسة حول الموضوع المطلوب للتعلم.

2. تعدد العناصر: حيث إن لكل عنصر من عناصر عملية التعلم والتعليم (المتعلم، المعلم، بيئة التواصل، مصادر التعلم، إلخ) دور مهم في أحداث التعلم وبناء المعارف لدى المتعلمين.

3. التشاركية: حيث يبنى التعلم على التواصل والتعاون والاعتماد الإيجابي المتبادل بين المتعلمين.

4. الخصوص للتقييم المستمر: حيث تختضع نتائج التعلم وما اكتسبه المتعلمون من معارف للتقييم المستمر عبر شبكة الإنترنت ومنصات التعلم.

5. الخصوص للتبادل الملمع للتعلم، وذلك عبر الأدوات الإلكترونية المتاحة.

6. البناء الشبكي: حيث إن جزءاً من التعلم يحدث خارج عقل المتعلم (التواصل مع الآخر) وجزء منه داخل عقله (بناء المعرفة).

7. تتنوع طرائق التعلم: منها البحث عبر شبكة الإنترنت أو البحث في المصادر الإلكترونية المتاحة عبر منصة التعلم أو من خلال أدوات التواصل الإلكترونية.

ثالثًا: النظرية التواصلية كأحد النظريات المفسرة للتعلم في العصر الرقمي:

كان للتطورات التربوية والتكنولوجية في العصر الرقمي دور كبير في ظهور نظريات تعلم جديدة، تأخذ بين الاعتبار تأثير المستجدات التكنولوجية على عملية التعلم، وتفسر عمليات التعلم التي تتم من خلال الأدوات التكنولوجية؛ وقد قدم "سيمنز" (Siemens,2005) "نظرية لتفسير التعلم في العصر الرقمي، أطلق عليها Connectivism theory.

1. وجودية تكوين شبكة من الأفراد المتعلم كأساس لبدء عملية التعلم: يعتمد التعلم وفق النظرية التواصلية على تكوين شبكة من المتعلمين يتفاعلون معاً، وذلك باستخدام الأدوات التكنولوجية.

2. تعدد الآراء ووجهات النظر حول فكرة بعينها أصل التعلم ووجهات: حيث تسهم التفاعلات التي تتم بين المتعلمين من خلال الأدوات التكنولوجية في تكوين صورة متكاملة عن الفكرة المطروحة للتعلم.
3- الاعتماد بشكل رئيس على أدوات التواصل الشبكي في إحداث التواصل الفعال بين المتعلمين: التعلم وفق النظرية التواصلية يقوم على التفاعل ومشاركة الآراء، بالإضافة إلى تبادل الملفات والصور ومقاطع الفيديو وملفات الإنجاز الإلكترونية. ويتم ذلك من خلال أدوات التواصل الشبكي، كالحمروان، والشبكات الاجتماعية،... الخ.

4- القدرة على رؤية الروابط بين الأفكار والمفاهيم المتعلقة مهارة أساسية للتعلم: تعتمد فكرة شبكة التعلم في النظرية التواصلية على شقين: أولاً، أن لكل متعلم فكرة أو وجهة نظر يشاركها مع الآخرين من خلال أدوات التفاعل التكنولوجية، والثاني الآخر يتصل ببطيئة الفكر ذاتها من حيث كونها (عقدة) أو نقطة التقاء، ومن ثم تمثل الأفكار حول موضوع التعلم مجموعة من (العقد)، وأدوات التواصل تسهم بروعة هذه الأفكار في شكل متراط. لذا، من الضروري تدريب المتعلمين على الفكر المنظمي لتحقيق التواصل الفعال.

5- بناء المعارف الجديدة هو هدف التعلم ومثرة التواصل: تهدف النظرية التواصلية إلى الحصول على المعرفة في ثوبها المتجدد. لذا، ينبغي أن تكون مصادر التعلم متنوعة وحديثة.

6- تكوين وباء مهارة اتخاذ القرار لدى المتعلمين هو في حد ذاته عملية تعلم وناتج لها: تعدد مصادر التعلم أمام الطلاب وفق النظرية التواصلية، وتبتل بذل ذلك من المتعلمين الوقوف على نقطة هذه المعلومات وارتباطها بالفكرة التي يبحث عنها؛ ولذلك تتكون لدى المتعلم مهارة اتخاذ القرار.

7- بناء القدرة على التعلم يسبق في الأهمية محتوى التعلم: تؤكد النظرية التواصلية على مهارة البحث عن المعلومات والمقارنة بينها وتفنيدتها وتحليلها وتركيزها أكثر أهمية من المحتوى نفسه.

8- التفاعل الإيجابي بين المتعلمين عبر أدوات التواصل الشبكي المتاحة لا يتم إلا من خلال نظام تكامل الإدارية التعلم، حيث ترى النظرية التواصلية ضرورة أن يكون هناك سيناريو للتعلم يضمن شراكة الجميع وفق بروتوكول محدد، يُحدد من خلاله الأدوار الخاصة بكل من المعلم والمتعلم، وذلك لضمان استمرارية التعلم.

رابعاً: أدواء معلم الرياضيات في العصر الرقمي:

تتعدد أدواء معلم الرياضيات في العصر الرقمي، حيث يذكر نبيل جاد عزمي وأخرون (2014، 556) أن في ظل توظيف تطبيقات الويب التشاركيه تغير الدور الذي يقوم به المعلم ليصبح ميبرًا وموجهاً لعملية التعلم، التي تعتمد على الإبداع النشط للمعارف والمعلومات من قبل المتعلم، وتذكر زينب محمود أحمد (2019، 1111-1110) أن أهم أدواء المعلم في العصر الرقمي تتمثل في:
- توظيف الأدوات التكنولوجية في تعليم الرياضيات وتعلمها، وتشجيع الطلاب على استخدامها لحل الواجبات وإنجاز التكفلات.
- تشجيع التواصل بين المتعلمين وبعضهم البعض، وبين المتعلمين والمعلمين.
- استخدام الأدوات التكنولوجية.
- تشجيع المعلمين على انتاج المعرفة، وتشجيعهم على استخدام الأدوات التكنولوجية، وإتحاد الفرصة لهم لطرح آراءهم ووجهات نظرهم في المحتوى التعليمي المقدم.
- تنمية مهارات التفكير العليا للمتعلمين، وإكسابهم المهارات الحياتية، ودعم الاقتصاد المعرفي، واستخدام إدارة تكنولوجيا التعليم.

تذكر سوزان أحمد بدر (2021، 152) أنه في ظل العصر الرقمي حدثت تحولات في دور المعلم، ومنها: تحول المعلم من مصدر للمعلومات إلى الميجر والموجه لطلابه في البحث عن المعلومات، من المتقئ إلى المرشد الأكاديمي لطلابه، ونافذة للمعلومات إلى مصدر للمعلومات، وتحول دور المعلم إلى مصدر للمعلومات في مجالات الابتكار، تذكر شيرين مرقص مصرى (2022، 540) أن أهم أدوار أديم معلم العصر الرقمي تشجيع الطلاب على البحث عن المعلومات بأنفسهم، ومشاركة المعلومات التي توصلوا إليها مع زملائهم، التفكير بصورة نقدية فيما يتلقونه من معلومات على شبكة الإنترنت.

خامسة: مطلبات التدريس في العصر الرقمي الواجب توفرها لدى معلم الرياضيات

ينبغي العصر الرقمي امتلاك معلم الرياضيات مهارات تربوية وفنية تسمح له بتوظيف المستحدثات التكنولوجية في العملية التعليمية، حيث تذكر شيرين مرقص مصرى (2022، 542) أن أهم المهارات اللازمة للمعلم في العصر الرقمي تتمثل في:

- الثقافة الكمبيوترية العامة: وتتضمن إجادة التعامل مع البرامج الكومبيوتر الأساسية، مثل: PowerPoint، Excel، Word.
- البحث الرقمي: وتتضمن مهارة البحث والوصول إلى الجديد، وخاصة طرق واستراتيجيات التدريس، والنظريات التربوية الجديدة، والبرامج والمواقع الجديدة التي يمكن استخدامها في التدريس،... الخ.
- التدريس الرقمي: وتتضمن تصميم المحتوى التعليمي للدروس بصورة رقمية، وتصميم طرق التدريس الرقمية المناسبة للدرس، وتصميم الوسائل التعليمية الرقمية المناسبة للدرس، وتصميم أنظمة تعليمية يمكن إجراها رقمياً، تصميم أدوات التدريس الإلكترونية للدرس، وشرح الدروس رقمياً، واستخدام وسائل تعليمية رقمية، واستخدام أنشطة تعليمية رقمية.
尚有，它提供了一些有用的工具，比如文件夹和课程管理工具。最后，它还提供了一些支持，比如在线帮助和用户支持。总的来说，Moodle是一个非常有用和灵活的平台，可以满足大多数教育和培训需求。

最后，我们需要记住的是，Moodle只是一个工具，它不能代替教师的教学。教师仍然是课程成功的关键因素。通过使用Moodle，我们可以增强学生的学习体验，但我们需要确保我们仍然提供高质量的教学，以满足学生的需求。

结论

在当前的教育环境中，Moodle提供了一个强大的平台，可以帮助我们提高教学效率和质量。它提供了一系列有用的功能，帮助我们管理和组织课程，也可以让学生更容易地学习。最后，我们需要记住的是，Moodle只是一个工具，我们仍然需要提供高质量的教学，以满足学生的需求。
إدارة المواقع الإلكترونية، وتوجيه الطلاب لتعاليم معها، وإخلاصات التعامل مع
الفضاء الإلكتروني.

2- توجيه المتعلمين للتعلم الرقمي ذائياً: حيث أصبح التعلم الذاتي ركيزة أساسية في
العصر الرقمي، لذا فأنه من الضروري إتاحة الفرصة للمتعلمين بأن يتعلموا
بشكل ذاكي، وترويهم بأساليب واستراتيجيات التعلم الذاتي.

3- توظيف التكنولوجيا في التعليم: حيث لم يعد دوره مقتراً على تقديم المحتوى
فقط بل توجيه الطلاب للوصول إلى المعلومات من خلال الأدوات التكنولوجية،
مثل المواقع الإلكترونية.

4- استخدام المقررات الإلكترونية: يميز المقرر الإلكتروني بأنه يتيح للتعلم
عرض محتواً مدعوماً بواسطات تفاعلية، مما يجعل العملية التعليمية أكثر متعة
وشبيهة. ولذلك فهو بحاجة لمجارات استخدام أساليب واستراتيجيات جديدة في
التدريب، تتضمن مع متطلبات التعامل مع هذه المقررات الإلكترونية.

من العرض السابق لمتطلبات تدريس الرياضيات الواجب توفرها في العصر الرقمي،
يتفق الباحث مع أهمية المتطلبات التكنولوجية الواردة في الدراسات السابقة، ولكن
يرى أنها ركزت فقط على الاستخدام العام لتقنيات التعلم، وأهمت الحاجة إلى
استخدام البرامج الخاصة بمجال الرياضيات، مثل: Autograph، GeoGebra،
وأن أهم متطلبات تدريس الرياضيات في العصر الرقمي تتمثل في: المعرفة
بماهية تدريس الرياضيات، مهارات توظيف برمجة الراض
(GSP) في تدريس الرياضيات، مهارات توظيف برمجية جيوجبرا
(GeoGebra) في تدريس الرياضيات، مهارات توظيف خدمة التخزين السحابية
(Google Drive) في تدريس الرياضيات، مهارات توظيف تقنية
اليوتيوب في تدريس الرياضيات، مهارات توظيف المدونات التعليمية
في تدريس الرياضيات، مهارات تصميم الاختبارات الإلكترونية عبر الشبكة
في تجريم تدريس الرياضيات.

ونظراً لأهمية متطلبات التدريس في العصر الرقمي، فقد اهتمت بها عدد من
الدراسات، ومنها: دراسة محمد حاجي علي (2022) التي هدفت إلى تعرف واقع
الأداء التدريسي لمعلمي رياضيات المرحلة الأساسية في ضوء متطلبات عصر التعليم
الرقمي، وهدفت دراسة عبيد مزعل الحربي (2022) إلى التعرف على درجة امتلاك
متطلبات تدريس الرياضيات في العصر الرقمي لدى معلمي الرياضيات المرحلة
الثانوية على ضوء بعض المتغيرات، وهدفت دراسة شيرين السيد إبراهيم وفاء
محمود عبد الفتاح (2022) إلى تنمية مهارات معلمي العلوم الرقمية من خلال
استخدام نظم حدد المصادف بين بيانات التدريب الإلكترونية، وتناولت دراسة وائل
محمد عبد الله (2019) كيفية تعليم الرياضيات وتعليمها في العصر الرقمي.

56
من خلال العرض السابق لمحور تدريس الرياضيات في العصر الرقمي يمكن الاستفادة منه في تحديد قائمة ميدانية بمتطلبات تدريس الرياضيات في العصر الرقمي المناسبة للطلاب معلمي الرياضيات، والاستفادة منها في بناء محتوى البرنامج المقترح.

المحتوى الثاني: تطبيقات الويب التشاركية:

أولاً: ماهية تطبيقات الويب التشاركية:

شهد القرن الحادي والعشرين الكثير من الإنجازات في مختلف مجالات الحياة، وكان من أبرزها التطور التكنولوجي في شبكة الإنترنت؛ حيث تطورت شبكة الإنترنت من كونها وسيلة نشر المعلومات إلى وسيلة لل التواصل، وظهرت العديد من التطبيقات والبرمجيات، التي تركز على دعم التواصل بين الطلاب، وتنشئ دورهم في إثراء المحتوى، وبناء المحتوى بشكل تفاعلي، وتحولت العملية التعليمية من الاعتماد على المحتوى الذي يتم إعداده مسبقاً إلى المحتوى الذي يتم إعداده بصورة تشاركية بين المعلم والمتعلمين، والمتعلمين وبعضهم البعض، وقد أطلق على الويب في هذه الفترة (علام المرسي أبو الروايات، مريم محمد السوداني، 2019، 431).

ومثلاً تطبيقات الويب التشاركية واحدة من أبرز تطبيقات الجيل الثاني للويب 2.0، ويطلق عليها مواقع تشارك المحتوى، وتُعرف بأنها مواقع إلكترونية تعتمد على تشارك المحتوى مع الآخرين، من خلال مجموعات تعلم تعاونية، والتفاعل بين المعلم والمتعلمين من جانب، وبين المتعلم وبعضهم البعض من جانب آخر؛ بهدف إكسب العلم والمتعلمين المعرفات والاتجاهات المرتبطة بالمحتوى الدراسي (عبد الله فيض الصعيدي، 2019، 434).

وبذكر نبيل جاد عزمي وأخرون (2014، 551-550) أن تطبيقات الويب التشاركية تمثل بيئة تعلم تفاعلية، تغلب على قيود الزمان والمكان للمستخدم، وتُعرف بأنها مجموعة من التطبيقات تعتمد على دعم التواصل بين مستخدمي الإنترنت، وتحظى دور المستخدم في بناء وإثراء المحتوى الرقمي على الإنترنت، والتعاون بين مستخدمي الإنترنت في بناء مجتمعات إلكترونية تشاركية، وتتيح للمستخدم النشر والمشاركة وتبادل الخبرات والمعلومات مع أقرانه.

وتُعرف بها شباب المطبري (2019، 72) بأنها مواقع إلكترونية تعتمد على مبدأ المشاركة والتفاعل بين المعلم والمتعلم، وبين المتعلمين وبعضهم البعض؛ بهدف تنمية المهارات والاتجاهات المرتبطة بالمحتوى الدراسي، وتعرف وفاء عبد العزيز محمد (2019، 293) بأنها الجيل الثاني للتعلم الإلكتروني، وتمثل دمج بين البرامج التكنولوجية والتعلم الإلكتروني التشاركى عبر الويب معاً حيث يعمل المتعلم في مجموعات ويتبادلون الأراء، ويتشاركون في بناء معرفة جديدة.
لمجلة تربويات الرياضيات – المجلد (26) العدد (5) - يوليو 2023م الجزء الثاني

لتحقيق هدف مشترك، ونُفرع السيد محمد مرعي (2020، 62) بأنها أحد خدمات الويب التشارك، تتبع للطالب التعاون مع زملائه في بناء تعلمهم للمحتوى التعليمي، ومشاركة المحتوى.

ويذكر نبيل جاد عزمي وأخرون (2014، 5-55) أن تطبيقات الويب التشاركية تدعم الاتجاه البنائي في العملية التعليمية، ومبدأ التعلم من خلال العمل، حيث تتمثل تطبيقات الويب التشاركية ببيانات تركز على أسس النظرية البنائية؛ نظراً لأنها تستهدف إيجاد التفاعل الاجتماعي بين المتعلمين، مما يساعد في تكوين معرفة تراكمية لدى المتعلمين.

وبناء على ما سبق يمكن تعريف تطبيقات الويب التشاركية بأنها "أحد تطبيقات الجيل الثاني للويب 2.0، وهي مجموعة من المواقع والخدمات والتطبيقات المتاحة عبر شبكة الإنترنت، تمكن المتعلمين من بناء المعرفة بصورة تشاركية، والتواصل بفاعلية، وتبادل الأفكار، ومشاركة المصدار، وإنشاء المحتوى، أو تعديله، أو نشره، ومن أمثلتها المدونات، الشبكات الاجتماعية، وموقع الفيديو (اليوتوب).

ثانياً: مميزات تطبيقات الويب التشاركية

يوفر التعلم باستخدام برامج الويب التشاركية العديد من المميزات، حيث يذكر نبيل جاد عزمي وأخرون (2014، 555) أن تطبيقات الويب التشاركية تميز بالطبع الاجتماعي مما يسهل في التغلب على مشكلة العزلة الاجتماعية، إمكانية مشاركة الخبرات ومصادر التعلم مع الآخرين، تتبع للمتعلمين مشاركة الأفكار والأراء؛ لنقدها وتبديها وتطويرها تشاركياً، تقليل الوقت والجهد المبذولين في البحث عن المعلومات والتفاعل مع الآخرين، توسيع خبرات المتعلمين في مجالات عديدة ومتنوعة.

وهذه تطبيقات الويب التشاركية مزاي كثيرة للمعلم والمتعلم في العملية التعليمية، من أهمها: تحقيق التواصل المستمر بين أطراف العملية التعليمية دون التقيد بحدود الزمان والمكان، تسهيل في تقديم تعليمية راحة فورية للطلاب من أقرانه أو المعلم، تسهيل افتراضية للطلاب إلى مجموعات تعليمية متخصصة في مجال معين، تساعد المتعلم على ترتيب أفكاره وتنظيمها إذا وأجهزته مشكلة، تشجع المتعلم على المثابرة للوصول إلى الهدف المراد تحقيقه (عبد الله فهد الصعادي، 2019، 144؛ وفاء عبد العزيز محمد، 2019، 298).

وتذكر عالياً أحمد صالح وأخرون (2021، 248) أن تطبيقات الويب التشاركية تميز ببساطة تصميمها، ودجانتها، وسهولة استخدامها، مما يساعد المعلم والمتعلم على استخدامها بأيكمانية وأقل جهد وأبسط تكلفة، كما تتميز هذه التطبيقات ببناء التشارك بين المستخدمين، حيث تمكن المتعلمين من العمل في مجموعات لإيجاد معرفة أو تحقيق أهداف بصورة تشاركية؛ بحيث يتم التركيز على توليد المعرفة وليس
مجلة تربويات الرياضيات – المجلد (32) العدد (5) - يوليو 2003م الجزء الثاني

استقباليًا، وبالتالي تتحول العملية التعليمية من سيطرة المعلم، إلى نظام متمركز حول المتعلم يشارك فيه المعلم، فالتعلم ميسر للتعلم باستخدام التسويق والآداب التشاركية.

يتضح مما سبق أن تطبيقات الويب التشاركية توفر فيها ميزات المستحث
الكبيريكي الذي يواكب العصر، ويلي احتياجات المتمركزين، وتميز بالعديد من المميزات، منها: سهلة تصميمها، لا تتطلب معرفة المستخدم بلغات برمجية معقدة، تجعل العملية التعليمية تعقوبية وتكاملية بين الطلاب، فكل متعلم يشارك في التحرير والنشر والإضافية والمتفاق، تتميز بالمرور والتفاعلي، مما يساعد أن يكون الطالب إيجابيًا ونشط، وتجعل الطالب مرتبط ومتفلق ومشارك لا مجرد مستقل ومتقي
سطلب، تشجع الطلاب على المشاركة في التعليم والمتعلم.

ثالثًا: نماذج من تطبيقات الويب التشاركية

ذكرت عدد من الأدبيات مثل: محمد عطية حسنين (2014، 976 - 940)، نور جاد عثمانية، وآخرون (2014، 555-556)، هيثم عاطف حسن (2016، 272)، العديد من تطبيقات الويب التشاركية، فيما يأتي شرح موجز لاهم التطبيقات التي تم توظيفها في البرنامج المقترب

Blogs

تُعرف المدونات بأنها تطبيق من تطبيقات الإنترنت يعمل من خلال نظام إدارة المحتوى، وهي عبارة عن صفحة ويب تظهر عليها تدوينات (مدخلات) مؤرخة ومرتبة ترتيبًا زمنيًا تصاعديًا، تصاحبها آلية لارشادة المدخلات القديمة، ويكون لكل مدخل منها عنوان دائم لا يتغير منذ لحظة نشره، يُمكن القراء من الولوج إلى أي تذون من وقت لآخر (نبيل جاد عصامي وآخرون، 508، 2014).

ويذكر محمد عطية حسنين (2014، 937-938) أن المدونة تعد بمثابة مجتمع تعلم، يديرها معلم أو معلم أو مجموعة صغيرة من المتعالين، تسمح للمتعلمين بإضافة الرسائل والتعليقات، والاستجابة لرسائل المتمركزين الآخرين، وتحتاج إلى استخدامها في طرح موضوعات، وتوحي اسئلة للمتعلمين، والمشارك في وجهات النظر، وتشجيعهم على المناقشة، والتعبير بأسلوبهم الخاص حول الموضوعات المطرح، وتمثل المدونات أداة فعالة في التعلم المتمركز حول المتعلم.

ويذكر ماهر إسماعيل صبري وأمنة سلوم الرحيلي (2011، 520-525) أنه يمكن توظيف المدونات في العملية التعليمية بعده طرق منها: الإدارة الصحفية، تدريب الطلاب والمتعلمين على مهارات معاينة، المناقشات، ملفات إنجاز للطلاب (الحقائب الإلكترونية)، إجراء البحوث، كذلك يمكن أن يستخدمها المعلمون في عرض الأخبار الخاصة بالمقررات الدراسية، وتقديم النغمة الراجعية المناسبة للطلاب.

59

- الشبكات الاجتماعية

هي مواقع مصممة لتسهيل عمليات التفاعل الاجتماعي، وإقامة المجتمعات الافتراضية عبر الإنترنت، والتواصل بين الأعضاء ذوي الاهتمامات المشتركة، لتبادل الأفكار، حيث تسهم للمستخدم بإنشاء ملفات بياناتيه الشخصية، ومن أشهر هذه المواقع: LinkedIn، Facebook، Twitter.

ويعرفها نبيل جاد عزمى وأخرون (2014) بأنها مواقع يسبب تسيير التواصل بين أفراد تجمعهم اهتمامات ومصالح مشتركة في مجتمع افتراضي، وتعد على المستخدم في تغذيتها وتشغيلها، وتتنوع الشبكات الاجتماعية حسب الأهداف، وبعضها يهدف إلى تكوين صداقات وتعارف، وبعضها الآخر يحرص في الاهتمام بمجال معين كشبات المعلمين، وتتيح الشبكات الاجتماعية مجموعة من الخدمات لجميع مستخدميها، كمشاركة الأنشطة والاهتمامات.

وتعتبر شبكة Facebook من أهم شبكات التواصل الاجتماعي، التي تنتج تأثيرها إلى العملية التعليمية، أضفها الجانب الإنساني للتعلم عبر الإنترنت، وذكرت منيرة عبد العزيز الشهيل (2019) أنه يمكن الاستفادة من شبكة الفيسبوك في تعليم الرياضيات من خلال:

- إنشاء المعلم مجموعة أو صفحة، ودعوة الطلاب للمشاركة فيها، وتبادل المعلومات، ونشر روابط الصفحات المتعلقة بالموضوع.
- وضع التكليفات والواجبات للطلاب، والطلب من الطلاب البحث عنها، وارسل كل منهم ما توصلوا إليه، سواء بطريقة فردية، من خلال الرسائل الخاصة، أو مشاركتها مع بعضهم البعض، وذلك حسب طبيعة التكليفات.
- إضافة الوسائط المتعددة، مثل الصور، ومقاطع الفيديو، والروابط لمواقع الإنترنت تتعلق بالدروس أو أحد دروسها.
- الاستفادة من الدراسة في مناقشة عناصر الدروس بين المعلم والمتعلمين أو بين المتعلمين وبعضهم البعض.
- تكوين صداقات مع المهتمين بالمقرر في جميع أنحاء العالم وتبادل المعلومات والخبرات بينهم.

مجلة تربويات الرياضيات - المجلد (26) العدد (5) - يوليو 2023م الجزء الثاني
(2014)، وقد أظهرت النتائج فاعلية الشبكات الاجتماعية في تنمية المتغيرات التابعة
قيد الدراسة.

Video Sharing (YouTube)

3- مواقع مشاركة مقاطع الفيديو

يعرف نبيل جاد عزمي وأخرون (2014، 66-111) مواقع مشاركة الفيديو بأنها
مواقع ويب يمكن للمتعلمين من تحميل مقاطع الفيديو على حواسيبهم الشخصية أو
العکس، ومشاركتها مع الآخرين، مع إتاحة خيارات لجعل ملفات الفيديو بشكل عام
"Private Groups" أو ضمن مجموعات خاصة "Public". حسب خمس (2014، 66) أن مواقع مشاركة الفيديو تعمل على إثراء المحتوى وتسهيل
فهم، وتشمل بعض إمكانيات الشبكات الاجتماعية، وتختلف عنها في أن مواقع
الشارك هدفها الرئيس هو التعامل مع المحتوى، وخاصة مجموعات الصور
والفيديوهات، في حين تركز مواقع الشبكات الاجتماعية على إقامة العلاقات الاجتماعية
بين أفراد المجتمع

ومن أشهر مواقع مشاركة الفيديو موقع YouTube، يسمح للمستخدمين بتحميل
فيديوهات ومشاركتها فيها، ويتميز موقع YouTube بمجموعة من المميزات، منها:
يتضح إضافة ملفات الفيديو إلى المدونات والشبكات الاجتماعية والمواقع التعليمية
لمشاهدتها مباشرة، يدعم التعلم التشاركي والتعاوني من خلال بيئة اجتماعية تتيح
التواصل بين المتعلمين حول هذه المقاطع (نبيل جاد عزمي وأخرون، 2014، 66-111).

وتتعدد استخدامات موقع YouTube في العملية التعليمية، حيث يذكر محمد عبد الله
الدوسري (2014، 60) أنه يمكن الاستفادة من موقع YouTube في العملية
التعليمية بطريقة الأولى: الاستفادة من مقاطع الفيديو المشتركة، وفي هذه
الحالة يقوم المعلم بالبحث عن أفضل المقاطع التي تشرح الهدف التعليمي المطلوب
تدريبها في القواعد التعليمية متخصصة، الطرقية الثانية: إنتاج مقاطع الفيديو
المستعرضة لطلاب من قبل المعلم نفسه، أو الاستعانة بخبراء في الوسط
المتعدد، ثم يقوم المعلم بإنشاء قناة تعليمية خاصة به على اليوتيوب، وتحميل هذه
المقاطع ومشاركتها للطلاب، ويدرس محمد عطية خميس (2014، 65-95) أنه
يجب على المعلمين أن يستكشفوا الفيديوهات الموجودة، ويطبعوا على محوياتها، وتحقق من مناسبتها، ثم يوجهون للمتعلمين إلى
تحميل فيديوهات معين، ودراسة ومناقشة والتفاوض عليه، وكتابة المقالات حوله بطريقة
تشاركية.

4- المنصات التعليمية التشاركية (Microsoft Teams)

عند منصة Microsoft Teams واحدة من منصات التواصل والشارك عبر
الإنترنت، تجمع بين المحادثات والاجتماعات، والملفات والتطبيقات معاً في نظام
مجلة تربويات الرياضيات - المجلد (٢٦) العدد (٥) - يوليو ٢٠٢٣

إدارة تعلم واط، وتتوفر منصة Microsoft Teams التشاركية العديد من الميزات، مثل غرف الدردشة، والمناقشات التشاركية، ومشاركة المحتوى، ومؤتمرات الفيديو، ويمكن لأعضاء الفريق التفاعل مع بعضهم البعض، وكذلك مع مقدم العرض من خلال الصوت والنص (حسن عوض الجندی، مروة نبيل عبد النبي، ٢٠٢١). ميزات عديدة لمساعدة المعلمين على التواصل، Microsoft Teams وتتوفر منصة منصة منها: (انصار محمد السيد، ٢٠٢٢).

- اجتماعات عبر الإنترنت يمكن من خلال Microsoft Teams عقد اجتماعات مع أعضاء الفريق، وإجراء مناقشات، عن طريق عمل اجتماع مع الأعضاء (URL) ومشاركة (Meet).
 ب- إعداد القنوات يمكن للأعضاء إعداد القنوات، وهي تتمثل مساحات التشارك داخل الفريق، ويمكن استخدامها لمشاركة المستندات والمحتوى.
 ج- الدردشة الجماعية أو الدردشة الخاصة: يمكن إنشاء جماعة لل التواصل والتشارك مع أكثر من شخص واحد، كما يمكن إجراء محادثات خاصة.
 د- إدارة الملفات: حيث بإمكان كل فريق الحصول على مساحة تخزينية خاصة بهم، بحيث يستطيع أعضاء الفريق إضافة مختلف الملفات، وتحريرها بشكل تشاركي.

وقد بحثت بعض الدراسات أثر توظيف المنصة التشاركية في Microsoft Teams تحقيق العديد من نواتج تعلم الرياضيات، ومنها: حسن عوض الجندی ومرود نبيل عبد النبي (٢٠٢١)، أمنة مفيد حمدي (٢٠٢٢)، وقد أظهرت النتائج فاعلية المنصة Microsoft Teams التشاركية في تنمية التغييرات التالية في الدراسة.

WhatsApp

- تطبيق WhatsApp أحد التطبيقات الاجتماعية التي تقوم على استخدام الإنترنت بهدف التواصل الاجتماعي بين الأفراد، ويتمتع في تعلم الرياضيات، حيث يذكر يحيى مزهر الزهراني (٢٠١٨) أن من أهم المميزات: القدرة على إنشاء مجموعات للتواصل والمحادثات، إمكانية إرسال رسائل صوتية للطلاب بشكل سريع وسريع وغير مكلف، البقاء على اتصال مع الطلاب خارج الصف، ومتاحة تنفيذ الأنشطة التعليمية، إرسال الصور والملفات إلى الطلاب مباشرة وإمكانية التعلق عليها، تسهيل التواصل بين المعلم والطلاب من جهة، وبين المعلمين وأولياء أمور الطلاب من جهة أخرى؛ للاطلاع على المستوى الدراسي للطالب ومدى تقدمه، تعزيز عملية التعلم وإعطاء التغذية الراجعة للطلاب جماعياً أو فردياً إذا تطلب الأمر.

وقد بحثت دراسة يحيى مزهر الزهراني (٢٠١٨) أثر استخدام (الواتس أب) في حل بعض المسائل الرياضية النظيفة في مادة الرياضيات على التحصيل الدراسي والتفكير الإبداعي لطلاب الصف السادس الابتدائي بمدينة مكة.
6- مشاركة المستندات

تتيح خدمة مشاركة المستندات إنشاء ومشاركة الملفات عبر الإنترنت. وتعدد المواقع التي تتيح مشاركة الملفات، وبعد تطبيق Google Drive تسمح بتحميل ومشاركة الملفات عبر شبكة الإنترنت، حيث يذكر هاني جلال أحمد يقدم خدمة إنشاء المستندات ونشرها، Google Drive (2018، 294-295) أن تعاون مع المستخدمين الآخرين في تحريرها بشكل مباشر، ويذكر اسلام السيد محمد وأخرون (2021) أنه يمكن استخدام خدمة ملفات الدروس والواجبات، ومشاركتها بالتعليمية، وإمكانية إنشاء التغييرات، والرد عليها، وإمكانية مزامنة الملفات، حيث يمكن للتمكين والمعلم الوصول إليها من أي مكان من خلال الرصد السابق لبعض نماذج تطبيقات الويب التشاركية الموجهة في تعليم وتعلم الرياضيات، حيث إنها سهلت بناء المعرفة بصورة تشاركية، ويمكن من خلالها تبادل المعرفة بين المعلمين والمتعلمين، وبين المتعلمين وبعضهم البعض، وتتعدد التطبيقات التشاركية، مما يتيح الفرصة للمعلم لاستخدام واحدة أو أكثر حسب نوع الهدف المراد تحقيقه.

رابعاً: أهمية توظيف تطبيقات الويب التشاركية في تعليم الرياضيات

يحقق توظيف تطبيقات الويب التشاركية في التعليم العديد من المميزات، حيث تذكر منى شباب المطيري (2019، 39) أن تطبيقات الويب التشاركية تساعد على تدعيم العلاقات الاجتماعية بين الطلاب، وتنمية مهارات التعلم المستقل، ومهارات حل المشكلات، وتعزيز التواصل بين الطلاب والمعلمين، وتقدم التغذية الراجعة أو الدعم من المعلم للطلاب بصورة فورية، ويذكر السيد محمد مرعي (2020، 32) أن تطبيقات الويب التشاركية تتيح للتعلم وفق سرعته الذاتية، تجعل العملية التعليمية أكثر تفاعلًا وتفاعلًا، سهولة التواصل بين المعلمين وبعضهم البعض وبين المعلم.

ويذكر عاصم محمد إبراهيم (2012، 87-88) أن تطبيقات الويب التشاركية تجعل المتعلم إيجابي جذب أثناء التعلم، ومشارك في كل ما يقدم من معلومات، التواصل المستمر بين أطراف العملية التعليمية من خلال خدمات الاتصال المتزامن وغير المتزامن، تبادل الآراء خلال الشبكات الاجتماعية، بما يتيح الفرصة للتفكير التأملي، والتعرف على الموضوعات من جوانبها المختلفة، توفر بيئة أكثر بال,temporal mentions, prep, misogyny & violence. ما يستهم في لتحقيق التعليم البنائي ذو المعنى.
وجهاً لأهمية تطبيقات الويب التشاركية فقد بُرِطْت كثيرون من الدراسات أثر التدريس
باستخدام تطبيقات الويب التشاركية، ودراسة أثر ذلك على تحقيق العديد من نواتج
التعلم المرغوب فيها، ومنها: دراسة حسن عوض الجندي ومروة نبيل عبد النبي
(2017)، فيصل خالد مرزوق (2015)، أحمد صادق عبد المجيد وعاصم محمد
إبراهيم (2018)، وفاء عبد العزيز محمد وآخرون (2019)السيد محمد مرعي
(2020)
من خلال الدراسات السابقة للمطورات تطبيقات الويب التشاركية يمكن الاستفادة منه في
رصف بعض تطبيقات الويب التشاركية المدونات التعليمية، المنصة التشاركية
(YouTube)، شبكة مشاركة مقاطع الفيديو يوتيوب (Microsoft Teams)
tطبيق، شبكة التواصل الاجتماعي، WhatsApp
عبر تطبيق في تقديم البرنامج المقترح للطلاب معلمي الرياضيات،
تقدم نشرة تعليمية تتيح للطلاب معلمي الرياضيات استخدام تطبيقات الويب
التياركة.

Dynamic Mathematics Software

المحور الثالث: برامج الرياضيات الديناميكية

أولاً: ماهية برامج الرياضيات الديناميكية

يعتبر توظيف البرامج الديناميكية من الأفكار الحديثة في تعلم الرياضيات،
وتعد من الأدوات الفعالة لتعليم الرياضيات، وبحرها بكيل أحمد الدوراني ومسفر
سعود السباعي (2016-119) بأنها برمجية حاسوبية، تتبع رسم الأشكال
الرياضية، وعرضها من زوايا متعددة، واكتشاف خصائصها، والتحقق من صحة
التعميمات الرياضية، وتكوين أفكار للبرهان الهندسي، وسمح بتحدي المتعلم بالأشكال
الرياضية، وبحرها علي محمد غريب (2019) بأنها برمجية كفاءة تفاعلية.

ويمُشِبَة المعلومة في تقديم محتوى حتى الرؤية ضعيفة، ماءً خلال
رسم الأشكال الرياضية، والتحقيق فيها، وتحريها في انجادة مختلفة، ودوران
وعكسها، ونُذِر صناعاتها، وunteer الأوان، بدلاً منها، والتحاكم بالقياسات المختلفة،
وتُوفَر بيئة تعليمية لتعبيك الفماحية الرياضية، واكتشاف العلاقات الرياضية.

وذكر عادل عادل الصادقة (2016، 234) أن صفة الديناميكية المرتبطة بتلك
البرمجة تشير إلى قدرتها على معالجة التغييرات التي تحدث في الموقع، والحجم
والشكل، مع المحافظة على العلاقات التي تم تحديها مسبقاً بين مكونات الشكل
الهندسي، كذلك قدرة تلك البرمجة على إجراء عرس متحرك للأشكال الهندسية
من أجل إنجاز مهمة معينة أو لإيضاح مسألة دالة على البرنامج.
وتذكر نجوى عطيات المحمدي (2012، 86-64) أن البرمجة الديناميكية تعكس
أفكار ومبادئ النظرية البنائية، وتقوم على أساس الدور الإيجابي والنشط للمتعلم،
واتهانة الفرصة للمتعلم لتعلم المفاهيم الرياضية، ومعالجة المعلومات، وتكوين بنيته
 журнал تربويات الرياضيات - المجلد (26) (6) - يوليو 2023

المعرضة تحت إشراف وتوجيه المعلم، وذكر إبراهيم محمد عبد الله (2020، 346-347) أن البرمجيات الديناميكية تستند على مبدأ التعلم باللذة والاكتشاف، وأن إدراك الطالب للعلاقات الرياضية بنفسه يجعلها ذات معنى بالنسبة له، ويؤدي إلى الاحتفاظ بها.

من خلال العرض السابق، تعرف البرمجيات الديناميكية إجراياً بأنها برامج حاسوبية جاهزة، ذات وجهة رسومية، مصممة لمعالجة المحتوى الرياضي، تتيح رسم الأشكال الهندسية، والدوال الجبرية، والحرك في خصائصها، بطريقة ديناميكية، وينظم التعامل معها، ويتضح التفاعلات الرياضية من خلالها، ويساعد على فهم المتعلم لجوائز التعلم الرياضية من خلال التطبيق العملي، وتمكن المتعلمين من اكتساب المفاهيم الرياضية، واكتساب خصائص الأشكال الرياضية بأنفسهم، ومن

(GSP)، البرامج الهندسي، GeoGebra تلقائية توظيف البرمجيات الديناميكية في تدريس الرياضيات

ثانياً: هزاب توظيف البرمجيات الديناميكية في تدريس الرياضيات

Checkout توظيف البرمجيات الديناميكية في تدريس الرياضيات العديد من الفوائد، حيث تذكر سميرة محمد فتحي (2021، 282) أن توظيف البرمجيات الديناميكية في تدريس الرياضيات يساعد المتعلم على:

ا- الاحتفاظ: حيث تتيح البرمجيات الديناميكية الفرصة للطلاب لاكتشاف التفاعلات الرياضية، وعميق فهم لهم، وتطوير قدراتهم على التحمين

ب- التصور البصري: تسمى البرمجيات الديناميكية في مساعدة الطلاب على تصوئ المعلومات الرياضية، من خلال تدوير الأشكال الهندسية وتحريكها، ورؤية الأمثلة المتنوعة والأشكال الهندسية (Wijaya Et al، 2021، 141)

ج- الاستمتاع تعلم الرياضيات: توفر البرمجيات الديناميكية فرصة رؤية الأشكال الهندسية وهي تتحرك، ويمكن نقلها وسحبها من مكان لأخر على الشاشة.

د- الاقتراب البصري: تتيح البرمجيات الديناميكية للطالب فرصة بناء صور مرنية لجوائز التعلم الرياضية، مما يساعد على بناء صور عقلية لما يشاهد، ويعمق فهمه للعلاقات المختلفة ويساعد على التحمين.

ه- تسهم في تحسين تعلم الرياضيات، وتعزز تعلم الطلاب، تدعم التدريس الفعال للرياضيات (سامية حسنين حلال، 2020، 208-210)

وقد أشارت العديد من الدراسات، مثل: بسمة محمود عبد العظيم، وآخرون (2014، 73)، إكرامي محمد مرسال (2017، 29)، محمد محمود حسن (2019، 118، 119) إلى أن البرمجيات الديناميكية تتميز بالعديد من المميزات، من أهمها:

- توفر صوراً مرنية للأفكار الرياضية المجردة؛ مما يساعد المتعلم فيهم المفاهيم الرياضية المجردة، وتنظيم تعلمهم، وجعله ذا معنى، وواقي للنظرية إلوا

65
ب- تراعي المنحنى التكاملى في عملية التدريس، حيث تساعد على ربط المفاهمات الرياضية على مستوى المراحل التعليمية المختلفة.

ج- تجعل تدريس الرياضيات عملية مشوقة، وأكثر جذبا للمتعلمين، بما تضمنها من مؤثرات بصرية ورسوم وصور متحركة؛ مما يزيد من دافعية المتعلم لمواصلة الدراسة بشفافية وتركيز وثقة.

د- تساعد التعلم على اشراك جماهيره ووجود جملة أثناء اكتساب الخبرات الرياضية، مما يساعد على تحقيق الجوانب التطبيقية والأهداف الوجدانية في مجال الرياضيات.

ه- تساعد على تحقيق تفريذ التعلم، فالطالب يكتسب المفاهمات والمهارات الرياضية بنفسه في ضوء تعلمه السابق.

و- تساهم في توحيد تعلم الرياضيات من التمركز حول المعلم إلى التمركز حول المعنى. وأخيراً، تجعل دوره إيجابي ونشيط في عملية التعلم وتذكر نجاحات عطلان المحمدي (2012). أن البرامج الديناميكية تتميز بعدة مميزات من أهمها: تتيح تحريك الأشكال الهندسية في اتجاهات مختلفة ودورانها وعكسها، وتغيير صفاتها، مما يساعد الطلاب على تصوير المفاهيم الرياضية، تتيح للطالب استكشاف التعليمات في الأشكال الهندسية، من خلال تقديم عدد كبير من الأمثلة، حيث يستطيع الطالب مشاهدة التغير في الأشكال الهندسية والتوصيل الي التعليمات بنفسه.

وذكر شادي ميلاد غالي (2022، 21) أن البرامج الديناميكية تتميز بالعديد من المميزات منها: يتوفر فيها أكثر من وسيلة لعرض المحتوى، حيث تتكامل فيها الصور والرسوم، استخدم تمثيلات رياضية مختلفة، التفاعل وفق استجابات المتعلمين أو المستخدم، يمكن استخدامها بشكل مستقل من قبل المتعلمين أو بمساعدة وتوجيه المعلم. المرونة في التعامل والعرض، توفر خبرات تعليمية أكثر واقعية للمعلم، تعرض المفاهيم الرياضية المجردة في صورة مرئية مثل الدوال، والمتباينة، والأشكال الهندسية، وغيرها.

يتضح مما سبق أن توظيف البرامج الديناميكية في تعليم الرياضيات وتعلمها يحقق العديد من الفوائد منها: إنها تساعد على تقديم جوانب التعليم الرياضياتية في صورة مرئية، مما يساعد في تسرعها وتمييزها للمتعلمين، تساعد المتعلمين على الوصول إلى التعليمات الرياضية بنفسه، تساعد في تنمية مهارات التفكير لدى المتعلمين، وخاصة التفكير الهندي، تسهم في تفكيك التلاميذ وزيادة دافعيتهم لتعلم الرياضيات، تساعد على أدرك المتعلمين للترابطات الرياضياتية بين جوانب التعلم المتضمنة بالدرس، تساهم في اعداد المتعلمين بصورة متملقة من العصور الرقمية، توفر مواقع تعليمية تساهم في إقناع المتعلمين بصحة الفكرة الرياضية، فمثلاً عند رسم مثلث
بحث: "GeoGebra" - برامج الحاسب"

1- برامج "GeoGebra"

"GeoGebra" هي برنامج حاسوبي لتعليم الرياضيات، تجمع بين الجبر والهندسة وحساب التفاضل والتكامل، ومصممة بطريقة تمكن المتعلم من بناء فهم عميق لجوائز التعلم الرياضية من خلال التطبيقات العملية، واتخاذ المفاهيم بنفسه، وتتضمن مجموعة من الأدوات تسمى في إكسبلور الجوابان الجواب الرياضية، وتجعل تعلم الرياضيات عملية سهلة وشفافة، وهو برنامج مجاني ومتفتح المصدر (إبراهيم محمد عبد الله، 2006، 169-247).

يمكن تحميله مباشرة من موقع البرنامج الآتي:

https://www.geogebra.org/download

ويعرف إبراهيم محمد عبد الله (2016) برامج "GeoGebra" بأنها برنامج حاسوبي لتعليم الرياضيات، تدمج بين أنظمة الجبر الداخلي وأنظمة الجبر المحوسبة، وتتيح للمتعلم إنشاء الأشكال الهندسية عن طريق إدخال الأعدادات، أو عن طريق رسم النقاط، وتحريكها في اتجاهات مختلفة، وتغيير خصائصها، وتم체 منصة للربط بين الجبر والهندسة، والربط بين التمثيل الرمزي والبيصري، مما يساعد الطلاب على فهم عميق لجوائز التعلم الرياضية.

2- إمكانية "GeoGebra"

في مجلتها تربيعات الرياضيات - المجلد (26) العدد (5) - يوليو 2023م parte الثاني

48) أن برمجية جيوجيبرا تغطي محاور المحتوى الرياضي التي حددها المجلس
الدولي لمعلمي الرياضيات (NCTM) مثل الجبر والهندسة والقياس.
ومن خلال العمل على برمجية جيوجيبرا، يمكن الباحث من تحديد بعض إمكانية
برمجية جيوجيبرا، ومن أهمها:
- الهندسة: تتيح برمجية جيوجيبرا رسم جميع الأشكال الهندسية المستوية، مثل
المستويات، المثلثات والمضلعات بأشكالها، بالإضافة إلى التحويلات الهندسية
للأشكال الرياضية.
- القياس: تتيح برمجية جيوجيبرا إيجاد قياسات الأطوال، والمساحات، للأشكال
الهندسية المستوية والفراغية، وقياس جميع أنواع الزوايا.
- الجبر: تتيح برمجية جيوجيبرا رسم أنواع الدوال المختلفة، وتمثيل المعادلات
والمتباينة، وإيجاد معادلات الأشكال المختلفة، وإظهار الخصائص الجبرية
للحال المرسوم في نافذة الجبر.
- الإحصاء والاحتمالات: تتيح برمجية جيوجيبرا معالجة البيانات إحصائيا ورسمها
 بيانيا، وحل التوزيعات الاحتمالية.

GeoGebra

ج- مميزات برمجية جيوجيبرا
تتميز برمجية جيوجيبرا بالعديد من المميزات، من أهمها: أنها برمجية مجانية،
mفتوحة المصدر، تدعم لغات متعددة (13 لغة) من بينها اللغة العربية، مبني على
المعايير العالمية لتدريس الرياضيات (NCTM)، يمكن استخدامها مع جميع فروع
الرياضيات، تستخدم في كافة المراحل التعليمية من المرحلة الابتدائية إلى الثانوية،
تتيح للمستخدم تصدير مخرجات البرنامج بصيغ متعددة، مثل الصور، صفحات
الويب (هولا بحضور سيد، 2022).

وتعد برمجية جيوجيبرا من البرامج التفاعلية التي حازت على الكثير من الجوائز
العالمية، مثل جائزة (EASA) للبرامج التعليمية الأوروبية بالسويد عام 2002،
وجائزة (ETWINNING) للبرامج التعليمية بالنمسا عام 2006، وجائزة
لطوير البرامج التعليمية بالولايات المتحدة عام 2008، وجائزة
(AECT) ببريطانيا عام 2009 (سامية حسان هلال، 2006).

بالإضافة إلى ما سبق، يمكن أن يضيف البحث المميزات التالية: امتلاك برمجية
جيوجيبرا تطبيق يعمل على الأجهزة اللوحية مثل معدات جهاز الكمبيوتر؛ مما يتيح وصول أكبر وسرع
للطلاب والمعلمين، سهولة الاستخدام، وتوفر وقت وجهد المعلم، توفر واجهة باللغة
العربية، مجانية الاستخدام.

68
د- مزايا توظيف جيوجبرا في تدريس الرياضيات

يحقق استخدام برمجية جيوجبرا في تدريس الرياضيات كثير من الفوائد، حيث يذكر ناعم محمد العمري (2014، 11) أن برمجية جيوجبرا تتبع تمثيل المفاهيم الرياضية، ورؤية العلاقات بين الجبر والهندسة، والربط بينهما، ومشاهدة التمييزات البيانية للمفاهيم الجبرية، فـ عند رسم الأشكال الهندسية في نافذة الرسوم البيانية؛ فإن التعبيرات الجبرية التي تعبر عن تلك الأشكال تظهر مباشرة في نافذة الجبر، والعكس بالعكس، وتذكر عبر سليمان حسين (2005، 97) أن توظيف برمجية جيوجبرا في تدريس الرياضيات يتيح فهم المبادئ الرياضية بشكل فاعلي، يساعد المتعلم على الربط بين التمثيلات الرياضية المختلفة (الجبري والهندسي)، يساعد المتعلم على اكتشاف جوانب التعلم الرياضية بنفسه، يبرز التحديات الحياتية للرياضيات المدرسية، يشجع المعلم على دمج التكنولوجيا في تدريس الرياضيات، وتوسيع أسلوبه التدريسي.

ويحقق توظيف برمجية جيوجبرا في التدريس التكامل بين الرياضيات والتقنية، وتساعد المتعلم في اكتشاف المفاهيم الرياضية، وتجسيدها بطريقة محسوسة، وربط الأفكار الرياضية ببعضها، وربط الرياضيات بالحياة، ويمني ثقة الطالب بنفسه ويكرره على تعلم الرياضيات، وتنمية مهارة التعلم الذاتي، وتحييد التحصيل المتعلم في تعلم الرياضيات، وتنمية مهارات التفكير خاصية التفكير البصري، وتنمية اتجاهات إيجابية نحو تعلم الرياضيات، وإتاحة الفرصة لكل طالب لإبراز أقصى إمكاناته (إكرامي محمد مرسال، 2017، 29: سامية حسن هلال، 2009، 62).

كما تناولت العديد من الدراسات والأدبيات الأجنبية توظيف برمجية جيوجبرا، ودراسة أن نهاها على تحقيق العديد من النواتج التعليمية، حيث هاجت دراسة "فوزية" (Fauziah، 2023) التي بحثت أثر استخدام برنامج جيوجبرا في تحقيق مخرجات التعليم في الرياضيات التطبيقية (موضوع دائرة والممارسات)، وهدفت دراسة "حنيفة وأخرون" (Hanifah، etal، 2023) المقلوب القائم على استخدام برنامج جيوجبرا لتنمية التفكير النقدي لدى طلاب المرحلة
2- برامج "الرسم الهندسي" (GSP)

تعتبر برامج "الرسم الهندسي" (GSP) أحد برامج الرياضيات الديناميكية، من الإمكانات المتخصصة في تصميم برامج تعلم الرياضيات، وهو يمثل بيئة تعلم تفاعلية، تتيح للطلاب بناء الأشكال الهندسية والتعامل معها بشكل تفاعلي، وتتيح للمستخدم تحريك وتنشيط الأشكال الهندسية لاستكشاف خصائصها، وقياس سمات عديدة للأشكال مثل الأطوال وزوايا ورسم الدوال، وإيجاد معادلتها، والبرنامج مزود بحة حاسة متطورة لإجراء العمليات الحسابية (محمد فخري العشري، 2006، 106). ويمكن تحميل البرنامج من خلال الرابط https://sketchpad.keycurriculum.com

وتعتبر برامج "الرسم الهندسي" (GSP) أحد برامج الرياضيات الديناميكية، تساعد المتعلمين على استكشاف المجاهر الهندسية، ورسم الأشكال الهندسية بصورة دقيقة، وتحريكها بشكل ديناميكي، وقياس الأطوال وزوايا والإحداثيات، وتطبيق التحويلات الهندسية على الأشكال الهندسية المختلفة، وتطوير نماذج بصرية للهندسة التحليلية (أحمد هشام عبد العظيم وأخرون، 2022، 511).

GSP- إمكانات برامج "الرسم الهندسي" (GSP) بالعديد من الإمكانات التي تساعد المتعلمين على إنجاز المهام المتدعة، حيث يمكن للبرنامج إيجاد القياسات المختلفة سواء أطوال أو زوايا، وإيجاد المساحات والجبر، ورسم محاور الصلب، ومساحات الأشكال، والأبعاد المقابلة والنازلة من نقطة ما، ومنتصف القطعة المستقيمة، وعمل الانعكاسات والانقلات والدورات للأشكال الهندسية المختلفة، معادلة الخط المستقيم، ومعادلة المماس، ورسم العديد من الأشكال الهندسية المختلفة (عادل سعيد الصاصدي، 2016، 106-112).

وبذكر أحمد هشام عبد العظيم وأخرون (2022، 511) أن برنامج الرسم الهندسي (GSP) يتيح إنشاء البنية الهندسية الإقليدية، وتسييس البنية الهندسية معقدة التركيب، يستخدم في إجراء التحويلات الهندسية (الانقلال- الدوران- الانعكاس- الإزاحة). يتيح إظهار خطوات العمل عند بناء أداة جديدة في البرنامج، يمكن من خلال خاصية السحب تغيير خصائص الأشكال بشكل تلقائي، حيث إنه إذا حدث تغيير
في قياسات الأطوال يغير البرنامج الأطول الأخرى لبعض الشكل الصحيح، يوفر الوقت والجهد للمعلم والتلاميذ في بناء الشكل الهندسي، والكشف فصائصها الرياضية، والوصول إلى التعصيبات الرياضية.

ج- مميزات برمجية الراسم الهندسي (GSP)

يتميز برنامج الراسم الهندسي (GSP) بتسع إلى العديد من المميزات، منها: دقة البناء.

وعند نقله إلى آخر مع دقة بالقياسات، التصوير: يستخدم البرنامج كأداة للبرهة في حصة الرياضيات، ويعطي الفرصة للطلاب لبناء وإعادة النظر للشكل بصورة مستمرة، والتحقق من الاختلاف والثبات، الاستكشاف: يتيح البرنامج استكشاف العلاقات داخل الأشكال الرياضية بشكل مبسط، والوصول إلى البارحين والتعاريف والنظريات (فرضية أحمد الحصان، 2012-27).

ويذكر عبد الجواد عبد الجواد بهوت وأخرون (2018) أن أهتم ما يميز البرنامج قدرته على تقدم أشكال هندسية متحركة؛ مما يعمل على إثارة الطلاب وذبح انتباهم، وزيادة استمتاعهم بالمادة، ويدر عادل سعيد الصاعدي (2012، 234) أن برنامج الراسم الهندسي (GSP) مصمم بصورة جيدة، وسهل الاستخدام، ويساعد المعليمين في إثبات المبادئ الهندسية، ويتنص بالدينيميكية التي تساع الطلاب على استكشاف المبادئ الرياضية بشكل ذاتي، ويساعد البرنامج الطلاب في تنمية مستويات التفكير الهندسي وفقاً لمستويات فان هايل، وخاصة في السنوات الثلاثة الأولى.

كما تناولت العديد من الدراسات والأنشطة الأجنبية توظيف برامج الرياضيات الديناميكية، ودراسة تأثيرها على تحقيق العديد من النتائج التعليمية، حيث هدفت دراسة "وجايجو وأخرون" (Wijaya Et.al, 2021,212) إلى بحث أثر التعلم القائم على المشروعات باستخدام برامج الرياضيات الديناميكية في تمنيم القدرات على التفكير الإبداعي لدى الطلاب معلم الرياضيات، وآظهرت النتائج أن استخدام برامج الرياضيات الديناميكية (برمجية Hawgent) ساعد على تنمية مهارات الاتصال، وحل المشكلات، ومهارات التفكير الإبداعي، وتحسين اللغة نفس لدى الطلاب معلم الرياضيات، وهدفت دراسة "بيريرا" (Pereira, 2021) إلى تدريس مصطلحات "النقاط والخطوط المستقيمة والمستوى" بواسطة برامج الرياضيات الديناميكية، وآظهرت النتائج استجابة الطلاب بصورة إيجابية عند تعلم الرياضيات باستخدام برامج الرياضيات الديناميكية في الفصل، وأيضاً استجابة إيجابية من الطلاب تجاه توظيف برامج الرياضيات الديناميكية، وتناولت دراسة "الآن" (2021) التعرف على أثر برامج الرياضيات الديناميكية في تدريس الموضوع المثلث لطلاب المرحلة الإبتدائية في تمنيم القدرات على حل المشكلات الرياضية، وأشارت النتائج إلى أن توظيف برامج الرياضيات التفاعلية (برمجية Hawgent) ينمي مهارة حل المشكلات الرياضية لدى الطلاب، عند مراحل: تحليل المشكلة، وضع خطة للحل، تنفيذ الخطة، التحقق من صحة الحل لموضوع المثلث، بالإضافة إلى جذب الطلاب تعلم الموضوعات الرياضية، وحددت دراسة "كان كان" (2020) التعرف على أثر دمج برامج الرياضيات الديناميكية والتعلم التعاوني في تحصيل الطلاب ل موضوع التناسب العكسي للدول، وأظهرت النتائج فاعلية التعلم التعاوني المعزز برامج الرياضيات التفاعلية في تنمية تحصيل الطلاب الفكري ومؤجل في الرياضيات، وبحثت دراسة "شونيم" (Chotimah etal,2020) أثر استخدام برامج الرياضيات الديناميكية (برمجية Hawgent)
جلة تربويات الرياضيات - المجلد (26) العدد (5) - يوليو 2013م الجزء الثاني

ويذكر محمد رجب فضل الله وشحاته مروى قناوي (2010, 2015) أن معتقدات المتعلم هى الأفكار التي يؤمن بها، ويكون عليها ممارساتهم التدريسية، وتتمثل معتقدات المتعلم مصدراً يفسر من خلاله المتعلم معاني تجاربه أثناء احتكاكه بالأطفال. وموضوع التخصص، وفي نفس الوقت تتشكل معتقدات المتعلم من الخبرات التعليمية داخل الصف، وبالتالي فالعلاقة بين معتقدات المتعلم
وتمارساتهم التدريسية علاقة تبادلية ودائرية أكثر من أنها علاقة خطية فقط بين السبب والمؤثر.

ويذكر عبد الواحد حمد الكبسي وخلاص صباح الشمري (2019، 42) أن
المعتقدات معرفية ذاتية غير موضوعية، ثابتة نسبياً، تشمل المشاعر نحو موضوع
معين، أو تتعلق بمبادئ يمكن الدفاع عنها، وتمثل المعتقدات مجموعة مستمرة من
الافتراضات تجاه قضايا معينة، وتتشكل هذه المعتقدات من مشاعر أو مدركات أولية
(داخلي وآخرين خارجية مكتسبة)، وهذا المزيج يؤدي إلى تشكيل رؤية فلسفية نحو
تدريس الرياضيات.

يذكر أحمد صادق عبد المجيد (2007، 153) أن المعتقدات تقع بين المجال المعرفي
والأدفاني، وأن هناك فرقاً بين المعتقدات والآليات، فالإلايات تتضمن جوانب
انفعالية، وتتخذ صفة الدينامية والتغيير والدافع، بينما المعتقدات تتضمن فكرة أو رؤية
عن موضوع معين، فنالاحية المعرفية هي السائدة في المعتقدات، ولا يضح فيها
الجانب الانفعالي المميز للإلايات بدرجة كبيرة، والإلايات تتشكل على أساس
المعتقدات، ويربط سلوك المعلم بكلاهما، ويرى حمدي أحمد عبد العزيز (2015،
3) أن المعتقدات بصورة عامة المكون المعرفي للإلايات.

ثانياً: المقصود بالمعتقدات التكنولوجية للمعلمين:

يعرف أحمد جابر السيد وآخرون (2022، 12) المعتقدات التكنولوجية بأنها جملة
قناعات وتصورات المعلمين الذين يتأثر في توجههم وقراراتهم لاستخدام
المستحاثات التكنولوجية في تدريس الرياضيات، وتعريفها هويدي محمد سيد (2022،
2051) بأنها المعارف والمفاهيم والذيوان الوجدانية، التي توجه المعلم نحو تبني دمج
التقنية في تدريس الرياضيات، وتحديد سلوكه تجاه ذلك، وتضفي سحر ماهر
الغنم (2021، 85)، بأنها الأراء أو الأفكار التي يؤمن بها المعلم تجاه استخدام
المستحاثات التكنولوجية في تعليم الرياضيات، وتعلهما.

وتشمل معتقدات معلمي الرياضيات نحو استخدام التكنولوجيا أثار الإيجابية أو
السلبية لاستخدام التكنولوجيا في التدريس، من خلال إدراك القيمة التعليمية للاستخدام
من جهة، والأيمان بالقدرة على توظيفها بشكل مناسب في عملية تعليم الرياضيات
وتعلهما (نادر علي عسابية، 2022، 203). ينضح من التعبيرات السابقة أنها اتفقت على أن المعتقدات تمثل القناعات والتصورات
التي يؤمن بها المتعلمين تجاه قضية معينة؛ ويتختلف الباحث مع تعريف هويدي محمد سيد
(2022، 201)؛ نظرًا لأن المعارف والمفاهيم حول موضوع ما بالمعنى المعرفي
يتمثل المرحلة الأولى في تكوين معتقدات الفرد تجاه قضية معينة، وذلك تعرف
المعتقدات التكنولوجية إجراياً بأنها مجموعة القناعات والتصورات العقلية التي يؤمن
بها الطلاب معلمي الرياضيات بالفرقة الرابعة، والمتعلقة باستخدام التكنولوجيا في
تعليم الرياضيات وتعليمها، وتضمن هذه المعتقدات معرفة الطلاب معيّنة الرياضيات،
وأفكارهم، وكفاءتهم حول كيفية تكامل التكنولوجيا في التدريس، وتعزيز تعلم
الطلاب، وتقاس في هذا البحث من خلال مقياس المعتقدات التكنولوجية الذي سيعد
الباحث.

ثالثاً: العوامل التي تؤثر على المعتقدات التكنولوجية للمعلمين:
هناك العديد من العوامل التي تؤثر على تكوين المعتقدات التكنولوجية للمعلم، حيث
تذكير بسن التوجه حسن أبو طليقة، أحمد حسن العياسة (2013، 1272) أن معتقدات
المعلم التكنولوجية تتأثر بخبرته ومعرفته السابقة، ومن تجاربه الخاصة، ومن الإعداد
الجامعي الذي حصل عليه، ومن البيئة المدرسية التي يمارس فيها مهنته، ومن أقرانه
في التدريس، ومن طلبه الذين سيقوم بتدريسههم.

ويذكر أحمد جابر السيد وأخرون (2022، 33، 34، 35) أن هناك مجموعة من
العوامل تؤثر على معتقدات المعلمين، واجتهادات نحو استخدام التكنولوجيا، ومنها:

1- اعتقاد بعض معلمي الرياضيات أن استخدام التكنولوجيا لا يناسب مع محتوى
المراحيل، وأحياناً يربطون ذلك بملعمة المرحلة التعليمية التي يمر بها المتعلم،
 مما ينتج عنه قلة الاهتمام باستخدام الأدوات التكنولوجية في تدريس الرياضيات.

2- صعوبة الحصول على الأدوات التكنولوجية، وقلة توافر المواد التعليمية والبرامج
المناسبة لتدریس الرياضيات.

3- قلة وعي بعض المعلمين بمفهوم وأهمية التكنولوجيا في الواقع العملي، وندرة
التجهيزات والمواد اللازمة لاستخدام التكنولوجيا، ووجود بعض المعوقات في
النواحي الإدارية والفنية، واعتقاد بعض المعلمين أن استخدام التكنولوجيا في
التدريس الصفی للمراهيل يستنفد الكثير من وقت المعلم وجهده في الإعداد
والتحضير الجيد لها.

4- وجود أسباب تجنب المعلمين تطبيق التكنولوجيا، مثل: التجارب السابقة السيئة مع
التكنولوجيا، عدم تأكد المعلمين عنهم أنهم يستطيعون أو يستطيعون التعامل مع
التكنولوجيا، الاعتقاد بأن وجود التكنولوجيا سيكون على حساب مصالحهم
الشخصية.

رابعاً: مكونات (أبعاد) المعتقدات:
أشارت بعض الدراسات، مثل: أحمد جابر السيد وأخرون (2022، 36، 2027)، ثانو
هاشم محمد وناصر شعبان طليقة (2009، 2012) إلى أن المعتقدات تتألف من ثلاثة
مكونات أساسية هي: مكون معرفي: ويشير إلى المعرفة، ويتضمن المعارف الخاصة بالمعلم.
وتكون المعتقد حيث يتضمن المعارف الخاصة بالمعلم حول موضوع ما، مكون
وجداني (العفاقي): ويشير إلى الاتجاه، حيث يتضمن المعتقد شمحة أفقية يصبح
بها سلوك المعلم في المواقف الذي ينشط فيه اتجاهه، فإنبل على درجة الإفعال يمكن

75
المجلة تربويات الرياضيات - المجلد (26) العدد (5) - يوليو 2023م الجزء الثاني

التميز بين المعتقد القوي والضعف، مكون سلوكي: ويشير إلى التطبيق، وهو مكون يتضمن مجموعة الاستعدادات السلوكية التي تتسم بالمشاعر والانفعالات إيجابياً وسلباً، وتوجه سلوك المعلم، وتدفعه إلى أن يسلك سلوك معين، ويثير أحمد صادق عبد المجيد (2007، 154) إلى أنه عندما ينظر المعلم إلى الرياضيات على أنها سياق اجتماعياً؛ فإن ذلك يوضح معتقداته حول طبيعة الرياضيات (المعتقد)، وطبقاً لذلك يبني استعداده وشعوره الإيجابي نحو تدريس الرياضيات (الاتجاه)، وتضيف النتيجة أن المعلم يسعى إلى تدريس الرياضيات من خلال المواقف التي تساعد المتعلم على التفكير (سلوك).

وتعد نظرية السلك المخطط لرائدها "أجزين" (Ajzen,1991) من النظريات التربوية التي تتناول المعتقدات وعلاقتها بالسلوك، وهي تفترض أن سلوك الأفراد مرتبط بوجود النية لأداء أو عدم أداء السلك، وتتعدد هذه النية بثلاثة عوامل أساسية، وهي: اتجاهات الأفراد نحو السلك، من خلال تقييم النتائج المتوقعة على أداء السلك، الدعم الاجتماعي الذي يتلقاه الأفراد من الأشخاص المحيطين لأداء السلك، العوامل التي قد تسهيل أو تعقيب أداء الأفراد للسلوك (ثناء هاشم محمد وناصر شعبان طلبة، 2017).

وتعد هذه العوامل بمثابة الركائز أو المكونات الرئيسية للمعتقدات: حيث يذكر أحمد جابر السيد وآخرون (2022، 338) أن مكونات أبعاد المعتقدات وفقاً لنظرية أجزين هي:

المعتقدات السلوكية: ترتبط السلك موضوع الاهتمام بالنهايات المتوقعة منه، فاعتقاد الفرد بفائدة السلك ونتائجه الإيجابية، بالإضافة إلى تقييمه للنتائج المتوقعة؛ يحدد الموقع تجاه هذا السلك، فإذا كان الاتجاه إيجابيٌّ؛ فإن ذلك يعبر عن وجود نية للقيام بهذا السلك.

المعتقدات المعيارية: تتضمن توقعات الفرد الاقتصادية قبول أو رفض الأفراد المحليين لهذا السلك، ومدى قابلية الفرد للامتثال للمحيطين به؛ هذه التوقعات بالإضافة إلى دافعية الشخص لقيام بهذا السلك تحدد المعايير الشخصية للقيام بالسلوك.

معتقدات السيطرة: تتضمن تصورات الفرد حول العوامل التي يمكن أن تسهل أو تعوق حدوث السلك، وهذه العوامل تفيد أو تسمح بأداء السلك، وقد تكون هذه العوامل عوامل داخلية، مثل الكفاءة الذاتية، أو قد تكون عوامل خارجية مثل توفر الموارد اللازمة لأداء هذا السلك.

وقد اهتمت عدد من الدراسات بتحديد أبعاد معتقدات المعلمين التكنولوجية، وتحدثت وجهات نظر الباحثين حول أبعاد معتقدات المعلمين التكنولوجية وطرق قياسها، حيث أشارت دراسة أحمد جابر السيد وآخرون (2022، 338) أنه يمكن قياس المعتقدات.
التكنيولوجيا لمعلمي الرياضيات من خلال الأبعاد الآتية: المعتقدات الذاتية حول التكنولوجيا، المعتقدات حول أهمية استخدام التكنولوجيا في التعليم، المعتقدات حول العائد التربوي لاستخدام التكنولوجيا في تعليم الرياضيات، المعتقدات حول القيمة التربوية العائدة على المعلمين من استخدام التكنولوجيا في تعليم الرياضيات.

ويذكر ناصر على عبادة (٢٠٢٢، ٤٧، ٤٧) أنه يمكن قياس معتقدات معلمي الرياضيات نحو استخدام التكنولوجيا عن طريق ثلاثة محاول، وهي: المعتقدات حول تدريس الرياضيات باستخدام التكنولوجيا، القدرة على توظيف التكنولوجيا أثناء عملية التعليم والتعلم، المعتقدات المعرفية للمعلم.

وطورت دراسة (Thurm & Barzel, ٢٠٢٢) مقاييس لمعتقدات معلمي الرياضيات نحو استخدام التكنولوجيا، وتضمنت محاور المقياس الأبعاد الآتية: دور التكنولوجيا في تعزيز التعلم بالاجتاحة، المعتقدات حول متطلبات التدريس باستخدام التكنولوجيا، المعتقدات حول الكفایات التكنولوجية للمعلم، المعتقدات حول ضرورة اتفاق الرياضيات بدءا قبل توظيف التكنولوجيا.

خامساً: أهمية تنمية المعتقدات التكنولوجية لدى الطلاب معلمي الرياضيات

تمثل المعتقدات أحد المكونات المهمة لتكامل التكنولوجيا في العملية التعليمية، فمن الضروري أن يعتقد المعلمون أن الأنشطة التي يتم تنفيذها باستخدام الأدوات التكنولوجية في بيئات التدريس مفيدة، بالإضافة إلى ذلك فقد اشارت معايير المجلس القومي لمعلمي الرياضيات (NCTM) إلى أن التكنولوجيا أساسية في تعليم الرياضيات وتعليمها، فهي تؤثر على تعليم الرياضيات، وتدعم تعلم الطلاب لها (سحر ماهر الغانم، ٢٠٠١، ١١، ١١، ١١).

وتلك أهمية المعتقدات في أنها تؤثر على عملية تعليم وتعلم الرياضيات، حيث تساهم المعتقدات في تحديد الممارسات التدريسية للمعلم، حيث يذكر أحمد صادق عبد المجيد (٢٠٠١، ١٣، ١٣) أن المعتقدات التي يملكها الفرد تؤثر على سلوكه وتصوراته، ولها دورًا مهماً في تحديد المهام واتخاذ القرارات المتعلقة بملح المهام، وتحديد السلوك، وتنظيم المعرفة والمعلومات، وأن القرارات التدريسية للمعلمين تتأثر بمعتقداتهم وأفكارهم، وذكركس بسنت حسن أبو طفيلة وأحمد حسن العياصرة (٢٠١٠، ١٣، ١٣) أن سلوك المعلم في الفصل وتفاعله مع الطلاب تتأثر بما لديه من معتقدات حول عملية التعليم والتعلم، وذكر ناصر علي عبادة (٢٠٢٢، ٤٧، ٤٧) أن للمعتقدات دورًا مهماً في تطوير الممارسات التدريسية للمعلمين من خلال توجيه الأنشطة التدريسية والتعامل مع المستجدات العلمية والتقنية في مجال الرياضيات، وبالتالي فإن تحسين تلك المعتقدات يساهم في تحسين الممارسات التدريسية.

يجد مما يصبح أنه لا يمكن أن يحدث نهزة نوعية في توظيف التكنولوجيا أثناء تدريس الرياضيات ما لم يكن لدى المعلم معتقدات إيجابية عن التطبيقية التكنولوجية.
واجهت دراسة "سيلبيس" (Belbase, 2015) إلى تحديد معتقدات معلم الرياضيات قبل الخدمة حول تدريس الرياضيات باستخدام التكنولوجيا، واستخدمت الدراسة خمس مقابلاً شبه منظمة، وركزت محتوى المقابلا على تدريس الكسور باستخدام أُسورة الكسور المصممة بلغة الجافا (Java Bars)، النوايا والنهائيات، تحويلات الهندسية باستخدام برنامج الراسم الهندسي (GSP)، تحليل البيانات الإحصائية باستخدام برنامج اكسيل (Excel Spreadsheet). أشارت النتائج إلى وجود سبع مجموعات من المعتقدات، وهي: المعتقدات حول المواد التعليمية، استراتيجيات التدريس، نشاطة الترابطات الرياضية، الأدوات التكنولوجية، المعايير الرياضية، أنشطة التحويلات، القضايا والمشكلات، ثم إجراء تدريب متعلق غير منظمة إضافية مع المشارك نفسه بعد تدريسه العملي، وأشارت النتائج إلى أن تدريب المعلم
على توظيف التكنولوجيا أدى إلى تنمية معتقدات إيجابية نحو دمج التكنولوجيا في تدريس الرياضيات.

وهدفت دراسة "نيونجيسا" (Nyongesa, 2013) إلى تحديد تأثير معتقدات معلمي الرياضيات حول الرياضيات على تبني استخدام التكنولوجيا في تعليم الرياضيات في المدارس الثانوية في كينيا، وتكونت عينة الدراسة من (298) معلم الرياضيات، وتم تصنيف معلمي الرياضيات وفقاً لمعتقداتهم حول الرياضيات في ثلاث فئات: النظرة التقليدية للرياضيات، النظرة المثالية للرياضيات، النظرة إلى الرياضيات على أنها حل مشكلات، وذلك وفقاً لمقياس "ارنست" (Ernest, 1988). وأظهرت النتائج أن هناك اختلاف المعلمين الرياضيات في معتقداتهم حول الرياضيات، وانعكس ذلك المعتقدات على دمج التكنولوجيا في التدريس، فالمعلمون ذوي النظرة التقليدية لا يميلون لاستخدام التكنولوجيا في تدريس الرياضيات.

فروض البحث:

بعد استقراء الإطار النظري والدراسات والبحوث السابقة، يمكن صياغة فروض البحث التالي:

1. يوجد فرق دال احصائياً عند مستوى (0.01) بين متوسطي درجات طلاب مجموعة البحث في التطبيقين القبلي والبعدي لاختبار الجوانب المعبرة لمهارات استخدام البرمجيات الديناميكية لصالح الطلاب في التطبيق البعد.
2. يوجد فرق دال احصائياً عند مستوى (0.01) بين متوسطي درجات طلاب مجموعة البحث في التطبيقين القبلي والبعدي لبطاقة ملاحظة الجوانب الأدائية لمهارات استخدام البرمجيات الديناميكية لصالح الطلاب في التطبيق البعد.
3. يوجد فرق دال احصائياً عند مستوى (0.01) بين متوسطي درجات طلاب مجموعة البحث في التطبيقين القبلي والبعدي لقياس المعتقدات التكنولوجية لصالح الطلاب في التطبيق البعد.

إعداد مواد وأنواع البحث:

أولاً: قائمة مهارات استخدام البرمجيات الديناميكية اللازمة للطلاب المعلمين

تم بناء قائمة مهارات استخدام البرمجيات الديناميكية اللازمة للطلاب معلمي الرياضيات، وفقاً للإجراءات الأتية:

1. تحديد الهدف من القائمة: هدفت القائمة إلى تحديد مهارات استخدام البرمجيات الديناميكية اللازمة للطلاب معلمي الرياضيات من وجهة نظر الخبراء والمختصين.
2. تحديد مصادر اشتقاق القائمة: تم بناء القائمة من خلال عدة مصادر، منها:

- مراجعة الأدبيات والدراسات السابقة التي اهتمت بمهارات استخدام البرمجيات

3- إعداد الصورة الميدنية للقائمة: في ضوء المصادر المعرفية السابقة، تم التوسع إلى صورة ميدنية للقائمة، وتضمنت محورين، هما: مهارات استخدام برمجية جيوجيبرا (GeoGebra)، مهارات استخدام برمجية الراسم الهندسي (GSP).

4- عرض القائمة على مجموعة من المحكومين: للتأكد من مناسبة القائمة، تم عرض القائمة في صورتها الميدنية على مجموعة من المتخصصين في المناهج وطرق التدريس، الذين سبق لهم التعامل مع البرمجيات الديناميكية (ملحق 1)، لاستطلاع آرائهم حول: درجة أهمية المهارات للطلاب ملمحي الرياضيات، درجة ارتباط المهارات الفرعية بالمهارات الأساسية، كفاءة المهارات الأساسية والفرعية، دقة ووضوح وسلامة الصياغة اللغوية للمهارات، وقد أقر السادة المحكومون بأهمية المهارات الرئيسية والفرعية في القائمة، وقدي آثار بعض المحكومين إلى بعض التعديلات، ومنها: تعديل الصياغة اللغوية لبعض المهارات، حذف أو دمج بعض المهارات الفرعية المشابهة، وتم عمل التعديلات المطلوبة.

5- الصورة النهائية للقائمة: بعد إجراء التعديلات التي أشار إليها السادة المحكومون، أصبحت قائمة مهارات استخدام البرمجيات الديناميكية في صورتها النهائية (ملحق 4)، وتكونت القائمة في صورتها النهائية من محورين، هما:

- المحور الأول: مهارات استخدام برمجية جيوجيبرا (GeoGebra)، ويتضمن 9 مهارات رئيسية، و51 مهارة فرعية، المحور الثاني: مهارات استخدام برمجية الراسم الهندسي (GSP)، ويتضمن 8 مهارات رئيسية، و58 مهارة فرعية.

استنادًا إلى هذه الإجراءات، يكون قد تم الإجابة عن السؤال الأول من سلسلة البحث، والذي نص على: ما مهارات استخدام البرمجيات الديناميكية اللازمة للطلاب المعلمين شعبية رياضيات بكلية التربية؟

ثانياً: إعداد البرنامج المقترح (دليل المعلم ودليل المتعلم):

تم إعداد البرنامج المقترح القائم على متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية وفقاً للإجراءات الآتية:
بناء قائمة متطلبات تدريس الرياضيات في العصر الرقمي اللازمة للطلاب معلمي الرياضيات

1- تحديد الهدف من القائمة: هدفت القائمة إلى تحديد متطلبات تدريس الرياضيات في العصر الرقمي المناسبة للطلاب معلمي الرياضيات، والتي يجب تضمينها في البرنامج المقترح.

3- إعداد الصورة المبدية للقائمة: في ضوء المصادر المعرفية السابقة، تم التوصل إلى الصورة المبدية للقائمة، وتضمنت (7) مهارات رئيسية، و(8) مهارة فرعية.

4- عرض القائمة على المحكومين: تم عرض القائمة على مجموعة من المختصين في المناهج وطريقة التدريس، وتقنية التعليم (ملحق 1); لتحديد مدى أهميتها للطلاب معلمي الرياضيات، درجة ارتباط المهارات الفرعية للمهارات الأساسية، دقة ووضوح وسلامة الصياغة اللغوية للمهارات، وقد أقرсадة المحكوم بأهمية المهارات المتضمنة بالقائمة، وأشار السادة المحكومين إلى إجراء بعض التعديلات، منها: إضافة الجوانب الوجدانية المرتبطة بأبعاد القائمة، تعديل الصياغة اللغوية لبعض المهارات الرئيسية، وإعادة ترتيب بعض المهارات الفرعية؛ وفي ضوء آراء السادة المحكومين تم عمل التعديلات المطلوبة.

5- الصورة النهائية للقائمة: بعد إجراء التعديلات التي أشار إليها السادة المحكوم، أصبحت القائمة في صورتها النهائية (ملحق 5)، وتضمنت القائمة في صورتها النهائية سبعه أبعاد رئيسية، و(57) مهارة فرعية، تمثلت في: المعرفة بتدريس الرياضيات في العصر الرقمي (4) مهارات، استخدام برامج Geometer’s Sketchpad الراسم الهندسي في تدريس الرياضيات (4 مهارات)، استخدام برامج GeoGebra في تدريس الرياضيات (8 مهارات)، استخدام خدمة التخزين السحابية Google Drive في تدريس الرياضيات (10 مهارات)، استخدام اليوتيوب في تدريس الرياضيات (34 مهارة).
كانت النقطة الرئيسية في الدراسة هي استخدام Google Forms في تدريس الرياضيات (7 مهارات)، تأكد المدونات التعليمية في تدريس الرياضيات (8 مهارات)، استخدام الاختبارات الإلكترونية (2 مهارات)، تدريس الرياضيات (9 مهارات).

تشمل التحقق من البرنامج المقترح القائم على متطلبات تدريس الرياضيات في العصر الرقمي:

أ- تحديد فلسفة البرنامج: يقوم البرنامج على متطلبات تدريس الرياضيات في العصر الرقمي اللازمة للطلاب معلومي الرياضيات، والتي تم تحديدها وفقًا لأراء المختصين، ويبني على أفكار ومبادئ النظرية التواصلية، كلية تعلم في العصر الرقمي.

ب- تحديد الأهداف العامة للبرنامج: روعي في صياغة الأهداف العامة للبرنامج أن تكون مرتبطة بمتطلبات تدريس الرياضيات في العصر الرقمي اللازمة للطلاب معلومي الرياضيات، وتحدد الأهداف العامة للبرنامج المقترح في تنمية مهارات استخدام البرامج التي يتم تدريسها بشكل بالمرأة،有意义ًا، ومهمة المعتقدات التكنولوجية لدى الطلاب المعلمين بكلية التربية.

ج- صياغة الأهداف الإجرائية للبرنامج: روعي في صياغة الأهداف الإجرائية للبرنامج المقترح أن تحقق الأهداف العامة للبرنامج المقترح، وأن تكون وثيقة الصلاة بمقابلة متطلبات تدريس الرياضيات في العصر الرقمي اللازمة للطلاب المعلمين؛ وتكونت الأهداف الإجرائية للبرنامج من (1) هدف، موزعة على موضوعات البرنامج المختلفة، وقد تمت صياغة الأهداف الإجرائية في بداية كل موضوع من موضوعات البرنامج المقترح، بالإضافة إلى صياغتها في دليل القائمين على تنفيذ البرنامج، والاسترشاد بها أثناء تنفيذ الأنشطة والمهام التعليمية، وقسمت.

جدول (3): محتوى البرنامج المقترح

<table>
<thead>
<tr>
<th>عنوان الموضوع</th>
<th>محتوى الموضوع</th>
</tr>
</thead>
<tbody>
<tr>
<td>التدريس في العصر الرقمي</td>
<td>1. تدريس الرياضيات في العصر الرقمي</td>
</tr>
<tr>
<td>التكنولوجيا والتدريس الرياضيات</td>
<td>2. التكنولوجيا والتدريس الرياضيات</td>
</tr>
<tr>
<td>برامج الرياضيات اليدوية</td>
<td>3. برامج الرياضيات اليدوية</td>
</tr>
<tr>
<td>(GSP)</td>
<td>(GSP)</td>
</tr>
<tr>
<td>المهارات الأساسية لبرنامج GSP</td>
<td>المهارات الخاصة بالبرنامج الهندسي</td>
</tr>
<tr>
<td>المهارات المتعلقة بـ GSP</td>
<td>المهارات الخاصة بالبرنامج الهندسي</td>
</tr>
<tr>
<td>برنامج GSP</td>
<td>برنامج GSP</td>
</tr>
<tr>
<td>تطبيقات رياضية باستخدام برنامج GSP</td>
<td>تطبيقات رياضية باستخدام برنامج جوجل</td>
</tr>
<tr>
<td>طراحات</td>
<td>طراحات</td>
</tr>
<tr>
<td>الد - تحديد المواد والوسائط التعليمية اللازمة لتنفيذ البرنامج:</td>
<td>تحديد المواد والوسائط التعليمية اللازمة لتنفيذ البرنامج:</td>
</tr>
<tr>
<td>تتضمن الوسائط التعليمية المستخدمة في البرنامج تشمل:</td>
<td>تتضمن الوسائط التعليمية المستخدمة في البرنامج تشمل:</td>
</tr>
<tr>
<td>جهاز الكمبيوتر محلي على برنامج الجيوجيرار، برنامج Microsoft PowerPoint</td>
<td>جهاز الكمبيوتر محلي على برنامج الجيوجيرار، برنامج Microsoft PowerPoint</td>
</tr>
<tr>
<td>الويب التشاركية، مثل:</td>
<td>الويب التشاركية، مثل:</td>
</tr>
<tr>
<td>المدونات التعليمية، المنصة التشاركية (Data Show)</td>
<td>المدونات التعليمية، المنصة التشاركية (Data Show)</td>
</tr>
<tr>
<td>ظهيرة تطبيقات تطبيقات تطبيقات تطبيقات</td>
<td>ظهيرة تطبيقات تطبيقات تطبيقات تطبيقات</td>
</tr>
<tr>
<td>YouTube</td>
<td>YouTube</td>
</tr>
<tr>
<td>Teams</td>
<td>Teams</td>
</tr>
<tr>
<td>Facebook</td>
<td>Facebook</td>
</tr>
<tr>
<td>WhatsApp</td>
<td>WhatsApp</td>
</tr>
<tr>
<td>Google drive</td>
<td>Google drive</td>
</tr>
<tr>
<td>و - تحديد استراتيجيات التعليم والتعلم:</td>
<td>و - تحديد استراتيجيات التعليم والتعلم:</td>
</tr>
<tr>
<td>تم استخدام مجموعة متنوعة الاستراتيجيات التدريسية ونواتج البرنامج المستهدفة منه، مثل:</td>
<td>تم استخدام مجموعة متنوعة الاستراتيجيات التدريسية ونواتج البرنامج المستهدفة منه، مثل:</td>
</tr>
<tr>
<td>المحاضرة، العروض العملية، الحوار والمناقشة، والتعليم التفاعلي، التعليم المدح، كما تضمن</td>
<td>المحاضرة، العروض العملية، الحوار والمناقشة، والتعليم التفاعلي، التعليم المدح، كما تضمن</td>
</tr>
<tr>
<td>البرنامج لقاءات عن بعد (Virtual Learning)</td>
<td>البرنامج لقاءات عن بعد (Virtual Learning)</td>
</tr>
<tr>
<td>بالإضافة إلى توظيف بعض تطبيقات الويب التشاركية، مثل:</td>
<td>بالإضافة إلى توظيف بعض تطبيقات الويب التشاركية، مثل:</td>
</tr>
<tr>
<td>Microsoft Teams</td>
<td>Microsoft Teams</td>
</tr>
<tr>
<td>Facebook</td>
<td>Facebook</td>
</tr>
<tr>
<td>lamp</td>
<td>lamp</td>
</tr>
<tr>
<td>والترفيه والأنشطة الودية في البرنامج</td>
<td>والترفيه والأنشطة الودية في البرنامج</td>
</tr>
</tbody>
</table>

83
البحث عن مصادر التعلم لبعض دروس، بالإضافة إلى تطبيقات تدريبية تركز على تنفيذ الجوانب العملية لموضوعات البرنامج، أداء الاختبارات الإلكترونية، إعداد بعض جوانب التعلم المتضمنة في كتب الرياضيات المدرسية باستخدام برامج الرياضيات الديناميكية (جيوجبرا - الراسم الهندسي).

تحدد أساليب التقييم المستخدمة في البرنامج: تنوعت أشكال التقييم لتشمل التقييم الفعلي: يتم إجراؤه في بداية البرنامج، ويتم من خلال تقييم الجوانب المعنية والإدائية للمهارات استخدام البرمجيات الديناميكية، باستخدام اختيار الجوانب المعنية، وبطاقة ملاحظة الجوانب الإدائية للمهارات استخدام البرمجيات الديناميكية، بالإضافة إلى تقييم المعتقدات نحو استخدام التكنولوجيا في تدريس الرياضيات باستخدام مقياس المعتقدات التكنولوجية.

التقييم التكويني (البنائي): يتم إجراؤه أثناء تنفيذ البرنامج، ويتم من خلال أسألة التقييم والمهام الإدائية الموجودة بنهاية كل موضوع، أوراق العمل، الاختبارات الإلكترونية باستخدام تطبيقات الويب التشاركية عقب كل درس من دروس البرنامج.

التقييم البعدي: يتم إجراؤه في نهاية البرنامج، ويتم من خلال إعادة تقييم الأداء للطلاب معلمي الرياضيات وذلك من خلال اختيار الجوانب المعنية وبطاقة ملاحظة الجوانب الإدائية للمهارات استخدام البرمجيات الديناميكية، مقياس المعتقدات التكنولوجية للطلاب معلمي الرياضيات.

تم تصميم موضوعات البرنامج المقترحة كلاً د عمادة تطبيقات الويب التشاركية.

 metodat العقلية: تم تصميم مدونة تعليمية لطلاب مجموعة البحث، وذلك باستخدام موقع "Blogger"، وتم من خلالها عرض محتوى البرنامج ودروسها، إضافة الأنشطة والفيديوهات، والتفاعل، والأنشطة الإثرارية، بحيث يتاحت للطلاب معلمي الرياضيات الإطلاع على المحتوى بسهولة، ويمكن الوصول إليها من خلال الرابط التالي:

https://shorturl.at/duSW5

مقدمة تعليمية على الفيسبوك: تم إنشاء مجموعة مغلقة على الفيسبوك باسم (برمجيات الرياضيات الديناميكية) خاصة بالبرنامج، وفيها يتم نشر ملخص لكل موضوع، وما يتضمنه من فيديوهات، وصور، وملفات، ويناقش من خلالها الطلاب معلمي الرياضيات المهم والموقعة الخاصة بحتوى
唾 ذ١ٍّف، ٠ٔظويِٙخ حٌّظؼٍُ فٟ طيٚ٠ٓ ٔظخثؾ طؼٍّٗ ٚحٓظفٔخٍحطٗ، طمٛ٠ُ حٌّٟٛٛع.

(4) إعداد دليل تنفيذ موضوعات البرنامج المقترح:

(5) إعداد دليل المتعلم للبرنامج المقترح:

قناة تعليمية لمشاركة مقاطع الفيديو عبر موقع يوتيوب (YouTube): تم إنشاء قناة تعليمية على موقع يوتيوب، وتم تسجيل فيديوهات لمجموع موضوعات البرنامج، وتحميلها على القناة، وتنظيمها باستخدام Playlist، ومشاركة روابط الفيديوهات مع الطلاب لمجموعة البحث، ويمكن الوصول إليها من خلال الرابط:

https://shorturl.at/lzVY1

.createElement("p"),

https://shorturl.at/hvyJ7

 مجموعة تواصل لطلاب مجموعة البحث عبر تطبيق WhatsApp: تم استخدام خدمة التخزين بمنح Google drive، بهدف تحويل الملفات الخاصة بموضوعات البرنامج، ومشاركتها للطلاب، ويمكن الوصول إليها من خلال الرابط:

https://shorturl.at/pxQV8

https://shorturl.at/hvyJ7

https://shorturl.at/hvyJ7

https://shorturl.at/hvyJ7

https://shorturl.at/hvyJ7

https://shorturl.at/hvyJ7
استطلاع آراء المحكرين حول البرنامج المقترح:

تم عرض الصورة الأولية للبرنامج المقترح (دليل المعلم، دليل المتعلم، الشكل الإلكتروني)، مصبوباً باستطلاع رأي على السادة المحكرين؛ للتحقق من صلاحيته التكنية والتربيوية. وقد أجمع السادة المحكرون على ملاءمة البرنامج المقترح للتطبيق على الطلاب مهتمي الرياضيات وأنشئوا إلى ضرورة إجراء بعض التعديلات في صياغة الأهداف السلكية، تعديل بعض الأنشطة، وبخصوص الشكل الإلكتروني للبرنامج، فأشار السادة المحكرين إلى ضرورة إضافة رابط لصفحة بها جميع اختبارات دروس البرنامج، وقد تم إجراء جميع التعديلات التي أشار إليها السادة المحكرون، وأصبح البرنامج المقترح جاهزاً للتجربة الاستطلاعية.

التجربة الاستضلالية للبرنامج:

تم تنفيذ التجربة الاستضلالية لموضوعات البرنامج، بعد الحصول على الموافقات الإدارية اللازمة لتنفيذ التجربة الاستضلالية للبرنامج، مع بداية الفصل الدراسي الثاني للعام الجامعي 2023/2024 (ملحق 17)، وقد وُلدت التجربة الاستضلالية إلى التعرف على: درجة مناسبة البرنامج للتطبيق على الطلاب مهتمي الرياضيات، المشكلات التي تواجه الطلاب مهتمي الرياضيات أثناء تنفيذ البرنامج، درجة مناسبة أنشطة البرنامج للطلاب مهتمي الرياضيات، مناسبة الزمن اللازم لتنفيذ موضوعات البرنامج.

وتم تنفيذ التجربة الاستضلالية على مجموعة عددها (20) طالب من طلاب الفرقة الرابعة. تخصص الرياضيات، من خارج عينة البحث الأساسية، وتتم تنفيذ التجربة الاستضلالية في الفترة من يوم السبت الموافق 11/3/2023، وحتى يوم الخميس الموافق 23/3/2023، وقد تم الإعداد لتنفيذ التجربة الاستضلالية، من خلال التأكد من سلامة الأجهزة التعليمية، وتحميل البرامج اللازمة لتطبيق البرنامج.

وأشارت نتائج التجربة الاستضلالية إلى ملاءمة الموضوعات التي تضمنها البرنامج المقترح لطيات الفرقة الرابعة تخصص رياضيات، مع إجراء بعض التعديلات في محتوى البرنامج، ومنها: تعديل بعض أنشطة البرنامج، وتعديل زمن دراسة بعض موضوعات البرنامج، وبعد إجراء التعديلات التي أسفر عنها التطبيق الاستضلالية، أصبح البرنامج المقترح في صورته النهائية وجاهز للتطبيق على تجربة البحث النهائية، كما في دليل المعلم (ملحق 7)، دليل المتعلم (ملحق 8)، صور لبعض النواذب الإلكترونية للبرنامج (ملحق 8).

وبذلك يكون الباحث قد أجاب عن السؤال الثاني من أسئلة البحث، والذي نص على "ما البرنامج المقترح القائم على متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية لتنمية مهارات استخدام البرمجيات الديناميكية والمعتقدات التكنولوجية لدى المتعلم شعبة رياضيات بكلية التربية؟"
ثالثًا: اختيار تحصيل الجوانب المعرفية لمهارات استخدام البرمجيات الديناميكية.

تم إعداد اختيار تحصيل الجوانب المعرفية لمهارات استخدام البرمجيات الديناميكية، وفقًا للخطوات التالية:

أ- تحديد هدف الاختبار: هدف الاختبار إلى قياس الجوانب المعرفية لمهارات استخدام البرمجيات الديناميكية لدى الطلاب (GeoGebra، GSP).

تحديد أبعاد الاختبار: تم تحديد أبعاد الاختبار في ضوء قائمة مهارات استخدام البرمجيات الديناميكية التي أظهر المتخصصون أن الطلاب معلامي الرياضيات في حاجة إليها، كما تم مراجعة الأدبيات والدراسات التي تناولت مهارات استخدام البرمجيات الديناميكية، ومنها: لمىاء أحمد عبد العظيم (2022)، عبير سليمان حسين (2020)، علي محمد غريب (2019)، حماد حسن بدوي (2017); في ضوء ذلك تكون الاختبار من ثلاثة أبعاد، وهي: المعرفة بالبرمجيات الديناميكية (10 مفردات)، استخدام برنامج جيوجيرا (29 مفردة)، استخدام برنامج الاسم الهندسي GSP (4 مفردة).

ب- صياغة مفردات الاختبار: تم صياغة مفردات الاختبار في ضوء جدول مواصفات الاختبار، وفقاً لموضوعات البرنامج، والأهداف التعليمية لكل موضوع، وقد تكون الاختبار في صورته الأولية من (91) مفردة، موزعة على موضوعات البرنامج، وتم صياغة مفردات الاختبار من نوع الاختبار متعدد، وفيها يختار الطلاب المعلم الإجابة الصحيحة من بين أربعة بدائل متاحة، ومفردات تعتمد على ترتيب خطط تنفيذ إنشاء هندسي معين.

ج- صياغة تعلمات الاختبار: تم صياغة تعلمات الاختبار حيث روعي الوضع، الملائمة لمستوى الطلاب معلامي الرياضيات، تحدد المطلوب بدقة للإجابة على مفردات الاختبار.

ه- صدق المحققين: تم عرض الاختبار في صورته الأولية على مجموعة من المختصين في المناهج وطرق التدريس وتقنية التعليم، وسبق لفهم التعامل مع البرمجيات الديناميكية (ملحق 1)، لإبداء الرأي في بنود الاختبار من حيث: ملاءمة مفردات الاختبار لقياس الجوانب المعرفية لمهارات استخدام البرمجيات الديناميكية، ملاءمة المفردات لمستوى الطلاب معلامي الرياضيات، ارتباط كل مفردة بالبعد الذي تنتمي إليه، دقة ووضوح وسلامة الصياغة اللغوية لمفردات
مجلة تربويات الرياضيات – المجلد (٢٦) العدد (٥) - يوليو ٢٠٢٣م الجزء الثاني

الاختبار، مدى كفاءة مفردات الاختبار لمهارات استخدام البرمجيات الديناميكية، وقد أظهرت أن أراء المحكبين أن الاختبار صالح للتطبيق على الطلاب معملي الرياضيات، مع اقتراح إجراء بعض التعديلات، مثل: تعديل صياغة بعض مفردات الاختبار، تغيير بعض البدائل لمفردات الاختبار، وفي ضوء أراء السادة المحكزين تم عمل التعديلات المطلوبة، وبذلك أصبح الاختبار يتمتع بصدق المحكزين (الصدق الظاهري).

و- إجراء التحسي الاستطلاعية للاختبار:

بعد إجراء التحسي على مجموعة من الطلاب معملي الرياضيات بلغ عددها (٣٠) طالب معلم، من خارج مجموعة البحث الأصلية، وذلك يوم الأحد الموافق ٢٠٣٠/٢/٢٥م؛ وذلك بهدف حساب كل من:

- زمن تطبيق الاختبار: تابع الباحث طريقة التسجيل التتابعي للزمن الذي استغرقه كل طالب في الإجابة، وتم حساب المتوسط لهذه الأوقات، وكان متوسط زمن الاختبار هو ١٢ دقيقة.

- صدق الاتساق الداخلي: تم حساب معاميل الارتباط بين الدرجة الكلية لكل عدد SPSS (٢٦)، وكانت النتائج كما هو موضح في جدول (٤).

جدول (٤): معاميل الارتباط بين درجات أعداد الاختبار والدرجة الكلية للاختبار

<table>
<thead>
<tr>
<th>الدالة</th>
<th>معامل الارتباط</th>
<th>معامل الارتباط</th>
<th>معامل الارتباط</th>
</tr>
</thead>
<tbody>
<tr>
<td>الفرقة ببرامج الرياضيات الديناميكية</td>
<td>٠.٥٧٤**</td>
<td>٠.٥٧٤**</td>
<td>٠.٦٥٤**</td>
</tr>
<tr>
<td>عد مع (٢٠١٠)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>عد مع (٢٠١٠)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>استخدام برنامج جيوبرافا</td>
<td>٠.٩٢٠**</td>
<td>٠.٩٢٠**</td>
<td>٠.٩٢٠**</td>
</tr>
<tr>
<td>استخدام برنامج الاسم الهندسي</td>
<td>٠.٩٧٦**</td>
<td>٠.٩٧٦**</td>
<td>٠.٩٧٦**</td>
</tr>
</tbody>
</table>

يتحقق من جدول (٤) أن قيم معاميل الارتباط بين أعداد الاختبار والدرجة الكلية للختبار جميعها دالة عند مستوى (٠.٠٠)، كما تم حساب معاميل الارتباط بين درجة كل فرقة والدرجة الكلية للعدد الذي تنصني البحث، وأشارت النتائج إلى أن قيم معاميل الارتباط بين درجة كل فرقة والدرجة الكلية للعدد دالة عند مستوى (٠.٠٠)، (ملحق ٩)، مما يدل على أن الاختبار متضمن في مفرداته، ويتمتع بصدق عال.

- ثبات الاختبار: تم حساب ثبات الاختبار عن طريق حساب معامل ثبات ألفا لكرونيخ، باستخدام البرنامج الإحصائي SPSS (٢٦)، وكانت النتائج كما في جدول (٥).

جدول (٥): قيم معاميل ألفا لثبات الاختبار عن طريق حساب معاميل ثبات ألفا لكرونيخ، باستخدام البرنامج الإحصائي SPSS (٢٦)

<table>
<thead>
<tr>
<th>المعامل الفا</th>
<th>المعامل الفا</th>
<th>المعامل الفا</th>
</tr>
</thead>
<tbody>
<tr>
<td>٠.٩٠٠</td>
<td>٠.٩٠٠</td>
<td>٠.٩٠٠</td>
</tr>
<tr>
<td>GSP</td>
<td>٠.٩٠٠</td>
<td>٠.٩٠٠</td>
</tr>
<tr>
<td>استخدام برنامج SPSS</td>
<td>٠.٩٠٠</td>
<td>٠.٩٠٠</td>
</tr>
</tbody>
</table>
يتضح من جدول رقم (٤): أن قيم معاملات ألفا لثبات الاختبار تراوحت بين (١٦) و (١٤) مما يدل على تمتع الاختبار كل وابعاده درجة مناسبة من الثبات.

- الصورة النهائية للاختبار: بعد إجراء التعديلات، وتطبيق الاختبار استطاع، أصبح الاختبار في صورته النهائية، كما في ملف (١٠٠)، وتم اعداد مفتاح التشخيص له كما في ملف (١١٠) وأصبحت النهاية العظمى للاختبار (١٠٨).

درجة، ويوصف جدول (٦) توزيع المفردات على أبعاد الاختبار

جدول (٦): مواصفات اختبار تحصيل الجوانب المعرفية لمهارات استخدام البرمجيات الديناميكية

<table>
<thead>
<tr>
<th>المستوى</th>
<th>المعرفة بالبرمجيات الديناميكية</th>
<th>استخدام برنامج G.S.P</th>
<th>استخدام برنامج GeoGebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>عدد المفردات</td>
<td>١٠٨</td>
<td>١٠٤</td>
<td>١٠٧</td>
</tr>
<tr>
<td>النسبة</td>
<td>١٠٠%</td>
<td>١٠٠%</td>
<td>١٠٠%</td>
</tr>
<tr>
<td>المجموع</td>
<td>١٠٩</td>
<td>١٠٨</td>
<td>١٠٧</td>
</tr>
</tbody>
</table>

رابعاً: إعداد بطاقة ملاحظة ملاحظة الأداءية لمهارات استخدام البرمجيات الديناميكية

مر إعداد بطاقة ملاحظة الأداءية لمهارات استخدام البرمجيات الديناميكية بالخطوات الآتية:

١- تحديد هدف بطاقة الملاحظة: هدف بطاقة الملاحظة إلى تحديد درجة تمكن الطلاب ملمعي الرياضيات من الجوانب الأداءية لمهارات استخدام البرمجيات الديناميكية (برنامي GSP، GeoGebra).

٢- بناء الصورة الأولية لبطاقة الملاحظة:

تم بناء الصورة الأولية لبطاقة الملاحظة في ضوء قائمة مهارات البرمجيات الديناميكية التي أظهر الخبراء والمختصوص أن الطلاب ملمعي الرياضيات في حاجة إليها، كما تم مراجعة الأدبيات التي تتناول تقييم الجوانب الأداءية لمهارات البرمجيات الديناميكية ومنها: عبير سليمان حسين (٢٠٠٧)، علي محمد غريب (٢٠٠٩)، حداد حسن بديوي (٢٠٠٧)، عابد محمد البلوي (٢٠٠٩)، وقد روعي أن تكون مفردات البطاقة ممثلة لمهارات استخدام البرمجيات الديناميكية (برناميGeoGebra).
ممجلة تربويات الرياضيات – المجلد (26) العدد (5) - يوليو 2023

(386) كمية وكيفياً، وفي ضوء المصادر المعرفية السابقة، تكونت
 GeoGebra
بطاقة الملاحظة من محورين: وهما مهارات استخدام برنامج GSP، ويشمل كل محور على أربع مهارات رئيسية، وهي:
المهارات الأساسية لاستخدام البرنامج، تنفيذ الإنشاءات الهندسية باستخدام البرنامج،
إيجاد القياسات المختلفة للعناصر داخل البرنامج، تطبيقات رياضية باستخدام
البرنامج.

ولصياغة مفردات بطاقة الملاحظة تم تحليل المهارات الرئيسية إلى مجموعة من
المهارات الفرعية، ثم صياغتها في صورة عباقرة سلوكية إجراية تصف الجوانب
الأدائية لمهارات استخدام البرمجيات الدينياميكية، وقد روعي عند صياغة عباقرة
بطاقة الملاحظة ارتباط العبارة بالعابرة التي تنتمي إليها، ووضوح العبارات، وفي
ضوء ذلك تم الوصول إلى الصورة الأولية لبطاقة الملاحظة، وقد اشتملت البطاقة في
صورتها الأولية على (113) مهارة فرعية، موزعة كالآتي: الجوانب الأدائية
GeoGebra لبرنامج: ويتكون من (58) مهارة فرعية، الجوانب الفرعية لبرنامج
GeoGebra: ويتكون من (35) مهارة فرعية.

وضع تعليمات بطاقات الملاحظة: تم صياغة تعليمات بطاقات الملاحظة، توضح
كيفية استخدامها، وقد اشتملت التعليمات على الهدف من بطاقات الملاحظة، كيفية
تسجيل الدراجات، تعريف مستويات الأداء والتقدير الكمي لكل مستوي; ومن ثم
تساعد المعلم في إدراة الطالب المعلم.

التقدير الكمي لأداء الطلاب: تم تقدير درجة تحقيق الأداء وفق ثلاثة مستويات
 لكل مهارة فرعية، وهي: ممتاز (د.جتان): إذا قام الطالب بأداء المهارة بشكل
كامل، وبيقة عالية، متوسط (د.جة واحدة): إذا قام الطالب بأداء المهارة بشكل
جزئي، أو إذا قام الطالب بأداء المهارة بالمحاولة والخطأ; أعبه الأداء الصحيح،
لم يؤدي (صغر): في حالة عدم قدرة الطالب على تحقيق الأداء الصحيح، أو
رفض الأداء.

صدق المحكمين: تم عرض البطاقة على مجموعة من المختصين في المناهج
وطرق التدريس (ملحق 1); بهدف استطلاع آرائهم حول: مناسبة البطاقة للهدف
التي وضعت من أجله، شموليتها للجوانب الادائية لمهارات استخدام البرمجيات
الدينياميكية (برنامج GSP، GeoGebra)، انتقاء المهارات الفرعية للمهارة
الرئيسية، دقة ووضوح وسلامة الصياغة اللغوية للمهارات؛ وقد أظهرت آراء
المحكمين صلاحية البطاقة للتطبيق على الطلاب معلمى الرياضيات، مع اقتراح
بعض التحديات، مثل: حذف المهارات الفرعية المتضمنة في الربع wearthe الرميات الأمامية، مع اقتراح
"المهارات
الأساسية لبرنامج GeoGebra
"، والتي يقوم الطلاب بتنفيذها
"الأشكال الهندسية"; تسهيلًا لعملية ملاحظة أداء الطلاب، وتعديل صياغة
ببعض العبارات: وقد تم إجراء التكاملات المتناسبة في ضوء هذه الملاحظات،

و- التجربة الاستطلاعية لبطاقة الملاحظة: تم التجربة الاستطلاعية لبطاقة الملاحظة على مجموعة من الطلاب معلم الرياضيات. بالفرقة الرابعة كلية التربية، بلغ عددهم (20) طالب معلم، من خارج مجموعة البحث الأصلية، وتتم تسجيل فيديو للطالب أثناء تنفيذ المهام. باستخدام برنامج تسجيل سطح المكتب "Fast Stone Capture v 8.3"، وذلك يوم الأربعاء الموافق 26/6/2013م، وتم فرض درجات البطاقة لكل طالب معلم، وذلك بهدف حساب كل من:

1- حساب الزمن المناسب لتطبيق بطاقة الملاحظة من خلال حساب متوسط الزمن الذي استغرقه الطالب للانتهاء من أداء كل مهارة من المهارات المتضمنة بالبطاقة، وقد بلغ الزمن (90) دقيقة.

2- الإسقاط الداخلي: تم حساب معاملي الارتباط بين درجات كل درجة أساسية والدرجة الكلية للبلاذ التي تنتمي إليه، وكانت النتائج كما هو موضح في جدول (7).

<table>
<thead>
<tr>
<th>جدول (7): معاملي الارتباط بين درجات أبعاد بطاقة الملاحظة والدرجة للبلاذ</th>
</tr>
</thead>
<tbody>
<tr>
<td>مهارة</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>المهارات الأساسية</td>
</tr>
<tr>
<td>الإنشادات الهندسية</td>
</tr>
<tr>
<td>المهارات الفيزيائية</td>
</tr>
<tr>
<td>تطبيقات رياضية</td>
</tr>
</tbody>
</table>

يتضح من جدول (7) أن قيم معاملي الارتباط بين أبعاد بطاقة الملاحظة والدرجة الكلية للبلاذ الذي تنتمي إليه جميعها متأصلة عند مستوى (0.05)، مما يدل على اتساق بطاقة الملاحظة في عبئاتها، وتمتها بصدق عالم.

3- ثبت بطاقة الملاحظة: تم حساب ثبت بطاقة الملاحظة من خلال حساب نسبة الاتفاق بين الملاحظين: حيث استعين الباحث بأحد الزملاء بالكلية، لقيام بالملاحظة، وتم عرض بطاقة الملاحظة ومحتواها عليه، وتروي بطاقة الملاحظة وإجادها تطبيق بواسطة الباحث وثانياً تطبيق بواسطة الباحث، وكان لكل طالب بطاقة احتماً تطبيق بواسطة الباحث، تم رصد درجات كل طالب، ثم حساب النسبة المئوية للاتفاق بين الباحث والزميل باستخدام معادلة "كوير (Cooper)", وقد تراوحت قيم متوسط معامل الثبات لأبعاد البطاقة بين (77-89%)، وهذه النسبة أكبر من

* يشكر الباحث د/ فتحي محمد أحمد، مدرس المناهج وطرق التدريس بكلية التربية - جامعة سوهاج.

91
مجلة تربويات الرياضيات – المجلد (26) العدد (5) - يوليو 2023م الجزء الثاني

(85%) التي حددها كوبه؛ مما يدل على تمتع البطاقة بدرجة ثانوية عالية، ويوضح
جدول (8) نسبة الاتفاق بين الملاحظين لبطاقة الملاحظة.

جدول (8): متوسط معامل الاتفاق بين الملاحظين على بطاقة الملاحظة

<table>
<thead>
<tr>
<th>البطاقة ككل</th>
<th>G.S. P</th>
<th>GeoGebra</th>
<th>برنامج</th>
<th>البعد</th>
<th>G.S. P</th>
<th>GeoGebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>%</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87%</td>
<td>89%</td>
<td>88%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

صرورة النهاية لبطاقة الملاحظة: بعد إجراء التعديلات التي أسفر عنها التطبيق
النظامي، أصبحت بطاقة الملاحظة في صورتها النهائية، وصلالح للتطبيق على
مجموعة البحث الأساسية، كما في ملحق (14)، وتضمنت بطاقة الملاحظة في
صورتها النهائية (113) عبارنة، موزعة على محورين، وهما: الجوانب الأدائية
للبرنامج GeoGebra: ويتكون من (4) مهارات رئيسية و (8) مهارة فرعية،
الجوانب الأدائية لبرنامج GSP: ويتكون من (4) مهارة رئيسية و (5) مهارة
فرعية، وبلغت النهاية العظمى للبطاقة ككل (226) درجة، والدرجة الصغرى
(صفر).

خامساً: إعداد مقياس المعتقدات التكنولوجية:

مر إعداد مقياس المعتقدات التكنولوجية للطلاب معلوم الرياضيات بالخطوات الاتية:

1- تحديد الهدف المقياس: تحدد الهدف من المقياس في قياس المعتقدات
التكنولوجية لدى طلاب الفرقة الرابعة بساحة الرياضيات بكلية التربية.

2- تحديد أبعاد المقياس: لإعداد المقياس تم الرجوع إلى البحوث والدراسات السابقة
التي تناولت المعتقدات التكنولوجية، ومنها: هاشم رشاد محمد (2022)، ناصر
محمود عياشة (2021)، هدى محمود سيد (2022)، شيماء محمد حسن
(2021)، سحر ماهر الغنام (2021)، ثريا حمود اليوسف ومزن أبو علوان
المعارف السابقة؛ تم تحديد الأبعاد الرئيسية للمقياس، وهي: المعتقدات حول
التكنولوجيا، المعتقدات حول فوائد التكنولوجيا في تعلم الرياضيات، المعتقدات
حول تأثير التكنولوجيا على دور المعلم، المعتقدات حول تأثير التكنولوجيا على
المتعلم، معتقدات المعلمين حول قدرتهم على استخدام التكنولوجيا، المعتقدات
حول دور التكنولوجيا في تقيم تعلم الرياضيات.

3- صياغة مفردات المقياس: تم صياغة المفردات في صورة مجموعة من
العبارات، أمام كل منها خمس استجابات هي: موافق بشدة، موافق، محايد، غير
موافق، غير موافق بشدة، وقد روعي في صياغة عبارات المقياس الوضوح.
الазвание: مجلة تربويات الرياضيات – المجلد (٢٦) العدد (٥) - يوليو ٢٠٢٣م الجزء الثاني

احتفاء المقياس على عبارات موجبة وعبارات سلبية، تضمن القياسات مواصفات
سلوكية تواجه المعلمين أثناء التدريس، وقد تكون القياسات في صورته الأولية
من (٨٩) مفردة.

٤- صياغة تصنيح القياس: تم إعداد تعبيرات للمقياس تتضمن تحديد ضمن
الإجابة، ومثالاً إجراياً، وقد روعي في صياغة التعبيرات الدقة، والوضوح،
وسلامة الصياغة من الناحيتين اللغوية والعملية.

٥- طريقة تصنيح القياس: تم تقدير درجات القياس الدالة داخل القياس وفق
خمس تقديرات، وهي: موافق تمامًا (٥ درجات)، موافق (٤ درجات)، محايد (٣
درجات)، غير موافق (٣ درجات)، غير موافق تمامًا (درجة واحدة)، مع مراعاة
أن تأخذ تلك الدرجات في حالة القياسات السلبية.

٦- صدق المحكمين: تم عرض القياس في صورته الأولى على مجموعة من
السادة المحكمين (ملحٌ١١٢٠١٣)؛ للتأكد من صدقه، وسلامة تطبيقه على الطلاب
معلمى الرياضيات، ارتبطت العبارة بالبعد الذي تنتمي إليه، مناسبة العبارة لقياس
المعتقدات التكنولوجية، الدقة العلمية، اللغوية لعبارات القياس، كفاءة القياسات
الرئيسية والفرعية لقياسات المعتقدات التكنولوجية، وقد أظهرت آراء السادة
المحكمين ملاءمة مقياس الاتجاه لتطبيقه على الطلاب المعلم، وقد اقترح
المحكمون بعض التعديلات، منها: تعديل صياغة بعض عبارات القياس، نهج
العبارات المشابهة مع بعضها البعض، حذف الدراسات التي تعطي نفس المعنى،
نقل بعض الدراسات من بعد إلى بعد آخر في القياس، وفي ضوء آراء السادة
المحكمين تم عمل التعديلات المطلوبة، وذلك أصح القياسات يتمتع بصدق
المحكمين (الصدق الظاهرة)، وأصبح جاهز لإجراء الدراسة الاستطلاعية.

٧- التجربة الاستطلاعية للقياس: بعد إجراء التعديلات التي أشار بها المحكمون
تم تطبيق القياس على مجموعة الطلاب بالفرقة الرابعة بكلية التربية
التعليمية، تخصص رياضيات، بلغ عددها (٣٠) طالب معلم، من خارج مجموعة البحث
الأصلية، وذلك يوم الأحد الموافق ١٣٣١/٣/١٣٣٢، بهدف حساب كل من:
١- زمن تقديم القياس: تم حساب زمن تطبيق القياس، وقد تبين أن الزمن
المتاح لانتهاء جميع الطلاب من الإجابة عن جميع عبارات القياس حوالي
(٣٥) دقيقة.

٢- الاتساق الداخلي: لتحديد الاتساق الداخلي للمقياس؛ تم حساب معاملات الارتباط
بين الدرجة المحصلة على كل بعد والدرجة الكلية للمقياس، وذلك باستخدام
البرنامج الإحصائي SPSS إصدار (٣٢)، وكانت النتائج كما هو موضح في
جدول (٩)
يتضح من النتائج الواردة في جدول (9) أن قيم معاملات الارتباط بين أبعاد المقياس والدرجة الكلية للمقياس جميعها دالة عند مستوى (0.1)، بالإضافة إلى ذلك تم حساب معاملات الارتباط بين درجة كل عبارة ودرجة البعد الذي تنتمي اليه (كما في ملحق 13)، وأشارت النتائج إلى أن قيم معاملات الارتباط بين درجة كل عبارة والدرجة الكلية للبعد جميعها دالة عند مستوى (0.01)، مما يدل على توفر الصدق البيني للمقياس.

ج- ثبات المقياس: تم حساب ثبات المقياس عن طريق حساب معامل ألفا لكروتوخ، وذلك باستخدام البرنامج الإحصائي SPSS إصدار (26)، وكانت النتائج كما في جدول (10).

<table>
<thead>
<tr>
<th>معامل ألفا</th>
<th>البعد</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.953</td>
<td>الانتهاء من استخدام التكنولوجيا</td>
</tr>
<tr>
<td>0.877</td>
<td>المعادلات حول فوائد التكنولوجيا في تعليم الرياضيات</td>
</tr>
<tr>
<td>0.954</td>
<td>المعادلات حول تأثير استخدام التكنولوجيا على المعلم</td>
</tr>
<tr>
<td>0.974</td>
<td>المعادلات حول تأثير استخدام التكنولوجيا على التعليم</td>
</tr>
<tr>
<td>0.642</td>
<td>المعادلات حول القدر على استخدام التكنولوجيا</td>
</tr>
<tr>
<td>0.927</td>
<td>المعادلات حول الدور التكنولوجي في تقديم الرياضيات</td>
</tr>
<tr>
<td>0.989</td>
<td>الدرجة الكلية للمقياس</td>
</tr>
</tbody>
</table>

يتضح من جدول (10) أن قيم معاملات ألفا لل ثبات تراوحت بين (0.68: 0.98). وهي قيم مرتفعة، مما يدل على توفر مؤشرات ثبات عالية للمقياس الحالي.

- الصورة النهائية للمقياس: بعد إجراء التعديلات، وتطبيق المقياس استطاعياً، أصبح المقياس في صورته النهائية، وصالح للتطبيق على مجموعة البحث الأساسية، وتضمن المقياس في صورته النهائية (78) عبارة موزعة على ستة أبعاد، كما في ملحق (14)، وأصبحت الدرجة الصغرى للمقياس (78) درجة، والدرجة العظمى للمقياس (35) درجة.
إجراءات تنفيذ تجربة البحث الأساسية: تضمنت تجربة البحث الإجراءات الآتية:

1- تحديد الهدف من تجربة البحث:

هدفت تجربة البحث إلى قياس فاعليّة البرنامج المُقترح القائم على متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية في تنمية مهارات استخدام البرمجيات الديناميكية والمعتقدات التكنولوجية لدى الطلاب المعلمين بكلية التربية.

2- اختيار مجموعة البحث:

تم اختيار مجموعة البحث من بين طلاب الفرقة الرابعة شعبة الرياضيات بكلية التربية - جامعة سوهاج، وبلغ عدد أفرادها (50) طالب معلم، ممن لديهم الرغبة في التعاون إجراء تجربة البحث.

3- تحديد التصميم التجريبي للبحث:

استخدم البحث الحالي المنهج التجريبي، القائم على التصميم شبّي التجريبي، ذو المجموعة الواحدة، ذات القياسين القيلي والبعدي لأداء الطلاب المعلمين مجموعة البحث، حيث قام الباحث بتطبيق أدوات القياس قيلياً على مجموعة البحث، ثم تدريس البرنامج المُقترح باستخدام تطبيقات الويب التشاركية، ثم تطبيق أدوات القياس تطبيقاً بعدياً، وقد تم اختيار تصميم المجموعة الواحدة، نظراً لأن محتوى البرنامج المُقترح جديد ولم يتم دراسته من قبل من جانب الطلاب المعلمين.

4- الحصول على الموافقات الرسمية لتطبيق تجربة البحث:

تم الحصول على موافقة إدارة كلية التربية - جامعة سوهاج لتطبيق تجربة البحث على طلاب الفرقة الرابعة شعبة رياضيات (ملحق 17).

5- تجهيز البيئة التعليمية:

تم توفير الإمكانيات اللازمة للتجربة، والمتضمنة في جهاز العرض الإلكتروني (Data Show، وشاشة العرض، وأجهزة الكمبيوتر، التأكد من توافر الإنترنت بعمل الكلية، تحميل برامج الرياضيات الديناميكية (برمجيات GeoGebra, GSP)، ثم تحديد توقيت تنفيذ تجربة البحث من خلال مقاولة طلاب الفرقة الرابعة شعبة رياضيات، وقد قام الباحث بتدريب موضوعات البرنامج المُقترح بنفسه.

6- التطبيق القيلي لأدوات البحث:

تم تطبيق أدوات القياس قيلياً، وذلك للتعرف على المستويات المبدئية لمجموعة البحث، وتم ذلك كما يلي: تم تطبيق اختبار تحصيل الجوانب المعرفية لمهارات استخدام برامج الرياضيات الديناميكية (برنامج GeoGebra، GSP، ومقياس المعتقدات التكنولوجية، وذلك يوم السبت الموافق ١٣٠٣/٣/٢٠٢٣، وتم تطبيق بطاقة ملاحظة الجوانب الأدائية لمهارات استخدام برامج الرياضيات الديناميكية، وذلك يوم الأحد الموافق ١٤٠٣/٣/٢٠٣
7- تنفيذ البرنامج المقترح القائم على متطلبات تدريس الرياضيات في العصر الرقمي:

بعد الانتهاء من التطبيق القيلي لأدوات البحث تم تطبيق البرنامج المقترح على طلاب مجموعة البحث، وقد استمرت تجربة البحث في الفترة من الأربعة الموافق ١٧/٣-٢٠٢٢م، وحتى الأربعة الموافق ١١/٥-٢٠٢٣م؛ بواقع ست ساعات أسبوعياً، وباجمالي عدد ساعات ٥٨ ساعة تدورية، وذلك خلال الفصل الدراسي الثاني للعام الجامعي ٢٠٢٢-٢٠٢٤م، ملحق (١٥)، وقد تم تطبيق تجربة البحث وفقًا للخطوات التالية:

١- تهيئة العناصر البشرية: تم تهيئة الطلاب لدراسة البرنامج، من خلال توضيح أهمية دراسة موضوعات البرنامج المقترح لهم في حياتهم العملية والمهنية.

٢- إجراء لقاء مع أفراد مجموعة البحث، بهدف شرح مكونات البرنامج، وكيفية الوصول للمحتوى الرقمي عبر تطبيقات الويب التشاركية، مثل المدونات التعليمية، المنصة التشاركية (Microsoft Teams)، قناة البرنامج المقترح، WhatsApp عبر يوتوب (YouTube)، الانضمام إلى مجموعة التواصل، وكيفية الوصول إلى ملفات البرنامج التي تمت مشاركتها عبر تطبيق الأنشطة، وحل أوراق العمل المتضمنة في البرنامج، والجدول الزمني لتطبيق محتوى البرنامج المقترح.

٣- تدريس محتوى البرنامج المقترح، حيث تم استخدام مجموعة متنوعة من الاستراتيجيات، وفقًا لأهداف كل موضوع من موضوعات البرنامج، مثل: المحاضرة المعززة بعروض الباوربوينت، العروض العملية لكيفية تنفيذ الجوانب الأدائية أمام المعلم، كما تضمن برنامج لقاءات عن بعد باستخدام منصة Microsoft Teams، بالإضافة إلى توظيف تطبيقات الويب التشاركية، مثل المدونات، مجموعة الفيسبوك، مجموعة التواصل عبر تطبيق WhatsApp، وتم مراعاة أن يكون الطالب المتعلم مشاركًا بصورة إيجابية في المعلومات والأنشطة والمهارات التي تضمنها البرنامج.

٥- إضافة محتوى البرنامج المقترح عبر تطبيقات الويب التشاركية (المدونة، مجموعة المقرر عبر الفيس بوك)، ويقوم الطالب باستكمال دراسة الموضوعات من خلالها، وتنفيذ الأنشطة، ومشاركتها عبر تطبيقات الويب التشاركية، وقد حرص الباحث على أن يكون هناك تواصل مستمر بينه وبين طلاب مجموعة البحث، وذلك للرد على أسئلتهم واستفساراتهم، وما قد يعترض مسارهم من صعوبات، وارسال التغذية الراجعة الفورية لهم أثناء دراستهم للبرنامج.
5. ينتقل الطلاب إلى المعمل، ويطلب منهم تنفيذ المهارات المتضمنة في كل درس من دروس البرنامج على أجهزة الكمبيوتر بأنفسهم، وتقييم المساعدة لهم سواء من الباحث أو أقرانهم في المجموعة؛ وذلك للتعرف على مستوى تقدمهم في الجانب الأدائي.

و. تقديم اختبار إلكتروني عقب كل محاولة للتعرف على مستوى تقدمهم في الجانب الأدائي، وبعد الانتهاء من الإجابة على الاختبار تعرض نتائجه، وعدد الإجابات الصحيحة وعدد الإجابات الخطأ، وتقييم التغذية الراجعة لهم.

8. التطبيق البعدي لأدوات البحث.

بعد الانتهاء من تطبيق البرنامج، تم تطبيق أدوات القياس تطبيقيًا بعديًا، وذلك للتعرف على فاعلية البرنامج المقترح في تنمية مهارات استخدام البرمجيات الديناميكية وتنمية معتقداتهم التكنولوجية، وتمثل تلك الأدوات في: اختبار تحصيل الجوانب المعرفية لمهارات استخدام البرمجيات الديناميكية (برنامج GSP، GeoGebra)، ملاحظة الاختبارات، وتقييمه.

9. ملاحظات الباحث أثناء تطبيق التجربة:

أ. أدى العديد من الطلاب إجابتهم بمحتوى البرنامج، وأهميتها لهم كمعلمين رياضيات في المستقبل.

ب. أدى الطلاب إجابتهم بتطبيقات الويب التشاركية المستخدمة في تنفيذ البرنامج، وخاصة مشاركة مقاطع الفيديو عبر YouTube، وأنهم قاموا بالاستماع لها أكثر من مرة، وإعادة تطبيقها، وكذلك التواصل عبر مجموعات الفيديو عبر WhatsApp.

ج. أدى الطلاب إجابتهم بالاختبارات الإلكترونية التي كان يتم إعطاؤها لهم عقب كل موضوع من موضوعات البرنامج، وأنها ساعدتهم على تقييم أنفسهم، وتشخيص نقاط الضعف لديهم، ومعالجتها أولاً بأول.

م. حرص الطلاب على تنفيذ الأنشطة التدريبية المتضمنة بالبرنامج، وبوصف ملحق

16) صور مجموعات البحث أثناء دراسة البرنامج ونماذج من أعمالهم.

10. الصعوبات والتحديات التي واجهت الباحث أثناء التجربة

- عدم توفر أجهزة كمبيوتر لدى البعض، وقد تم التغلب عليها من خلال السماح للطلاب باستعمال أجهزة الكمبيوتر المتوفرة بالكلية لتنفيذ مهام وأنشطة البرنامج.

97
يُنض من جدول (11) وجود فرق ذات دالة إحصائية بين متوسطات درجات الطلاب المعلمين لمجموعات البحث في التطبيقين القبلي والبعدي لاختبار الفرض الأول من فرض البحث، وهذا يعني أن البرنامج المقترح القائم على متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية في تنمية الجوانب المعرفية لمهارات استخدام البرمجيات الديناميكية لدى الطلاب المعلمين بكلية التربية، وإجابة ذلك السؤال صبغ الفرض الثاني: "يوجد فرق دال إحصائيًا عند مستوى (0.01) بين متوسطي درجات طلاب مجموعة البحث في التطبيقين القبلي والبعدي لاختبار الجوانب المعرفية لمهارات استخدام البرمجيات الديناميكية لصالح التطبيق في التطبيق البدعي". بالنظر إلى صحة هذا الفرض تم تمت المعالجة الإحصائية وذلك باستخدام البرنامج الإحصائي SPSS أصدر (2019) وكان النتائج كما هو موضح في جدول (11) الآتي:

<table>
<thead>
<tr>
<th>حجم التأثير</th>
<th>مستوى الدالة</th>
<th>الالحجار المعياري</th>
<th>المعرفة ببرامج الديناميكية</th>
<th>استخدام برنامج GeoGebra</th>
<th>استخدام برنامج G.S. P</th>
<th>الاختبار ككل</th>
</tr>
</thead>
<tbody>
<tr>
<td>كبير</td>
<td>0.76</td>
<td>0.01</td>
<td>2.08</td>
<td>1.21</td>
<td>9.36</td>
<td>50</td>
</tr>
<tr>
<td>كبير</td>
<td>0.95</td>
<td>0.01</td>
<td>5.20</td>
<td>3.31</td>
<td>38.62</td>
<td>50</td>
</tr>
<tr>
<td>كبير</td>
<td>0.94</td>
<td>0.01</td>
<td>8.22</td>
<td>3.80</td>
<td>48.18</td>
<td>50</td>
</tr>
<tr>
<td>كبير</td>
<td>0.96</td>
<td>0.01</td>
<td>12.88</td>
<td>6.26</td>
<td>96.16</td>
<td>50</td>
</tr>
</tbody>
</table>

يستخدم نتائج البحث للاختبار الجوانب المعرفية لمهارات استخدام البرمجيات الديناميكية لصالح التطبيق في التطبيق البدعي، وبناء على ذلك تم قبول الفرض الأول من فرض البحث، وهذا يعني أن البرنامج المقترح القائم على متطلبات تدريس الرياضيات في
العصر الرقمي باستخدام تطبيقات الروابط التشاركية ساعد الطلاب المعلمين على تطوير معارفهم المرتبطة بمهارات استخدام البرمجيات الديناميكية.

كما يوضح من جدول (11) أن قيم مربع إيتا (η^2) لحجم التأثير للاختبار ككل ومهاراته الفرعية أكبر من (0.14)، مما يدل على وجود أثر كبير وفعال للبرنامج المقترح في تنمية الجوانب المعرفية لمهارات استخدام البرمجيات الديناميكية وفقاً لمعايير كوهين لحجم الأثر (عزت عبد الحميد حسن، 2011، 183، 2)، حيث أظهر البرنامج المقترح في تنمية المعرفة ببرامج الرياضيات الديناميكية بنسبة 77%، وأظهر في تنمية الجوانب المعرفية لمهارات استخدام برنامج GSP بنسبة 94%، وأظهر في تنمية الجوانب المعرفية لمهارات استخدام GeoGebra بنسبة 95%.

ويوضح جدول (12) مزيد من التفاصيل حول أداء الطلاب في المستوى المعرفية للاختبار:

<table>
<thead>
<tr>
<th>حجم التأثير</th>
<th>η^2</th>
<th>مستوى تطبيق</th>
<th>الاحرق</th>
<th>المتوسط</th>
<th>العدد</th>
</tr>
</thead>
<tbody>
<tr>
<td>كبير</td>
<td>0.94</td>
<td>قائلي</td>
<td>4.09</td>
<td>9.48</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>بعدي</td>
<td>1.09</td>
<td>24.16</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>فهم</td>
<td>3.42</td>
<td>5.96</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>تطبيق</td>
<td>0.88</td>
<td>15.42</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>متوسطي</td>
<td>6.17</td>
<td>13.42</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>عليا</td>
<td>4.14</td>
<td>45.64</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>بعدي</td>
<td>2.03</td>
<td>4.42</td>
<td>50</td>
</tr>
</tbody>
</table>

يتضح من جدول (12) وجود فروق ذات دلالة إحصائية بين متوسطات درجات الطلاب معلمي الرياضيات مجموعة البحث في التطبيقين القليل والاُمبي لكل مستوى من المستوى المعرفية للاختبار لصالح التطبيق الاُمبي، كما يتضح من جدول (12) أن قيم مربع إيتا (η^2) لحجم التأثير في كل مستوى من المستوى المعرفية للاختبار أكبر من (0.14)، وبالتالي فإن البرنامج المقترح له حجم أثر كبير في تنمية التحصيل المعرفي المرتبط بمهارات استخدام البرمجيات الديناميكية لكل مستوى من المستويات المعرفية للاختبار لدى طلاب مجموعة البحث.

وللتحقق من وصول الطلاب لمستوى التمكين في الجوانب المعرفية لمهارات البرمجيات الرياضيات الديناميكية تم استخدام اختبار one-sample t-test
للمقارنة بين متوسط درجات أفراد مجموعة البحث في الاختبار البعد وقيمة مستوى التمكن (80%*)، وكانت النتائج كما هو موضح في جدول (13):

جدول (13): نتائج اختبار t-test للفرق بين متوسط درجات مجموعة البحث ومستوى التمكن في القياس البعد لاختلاف الجوانب المعرفية لمهارات استخدام البرمجيات الديناميكية

<table>
<thead>
<tr>
<th>Sig</th>
<th>قيمة ت</th>
<th>احتراف المعياري</th>
<th>القيمة الحسابية</th>
<th>مستوى التمكن</th>
<th>النهاية القيمة (80%)</th>
<th>القيمة</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>7.96</td>
<td>1.21</td>
<td>9.36</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>9.02</td>
<td>3.31</td>
<td>38.62</td>
<td>34.4</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>7.78</td>
<td>3.80</td>
<td>48.18</td>
<td>44</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>11.02</td>
<td>6.26</td>
<td>96.16</td>
<td>86.4</td>
<td>108</td>
<td></td>
</tr>
</tbody>
</table>

يوضح من جدول (13) وجود فروق ذات دلالة إحصائية عند مستوى (0.01) بين المتوسطات الحسابية لدرجات مجموعة البحث على اختبار الجوانب المعرفية لمهارات استخدام البرمجيات الديناميكية ككل وأبعاد الفرعية، وبين مستوى التمكن (80%) من جهة أخرى، وكانت جميع هذه الفروق لصالح أفراد مجموعة البحث، مما يدل على أن البرنامج المقترح ساعد الطلاب على الوصول إلى مستوى التمكن في الجوانب المعرفية المرتبطة بمهارات استخدام برنامج GeoGebra، ونلتاحق من فاعلية البرنامج في تنمية الجوانب المعرفية لمهارات استخدام البرمجيات الديناميكية ككل ومهارات الفرعية، تم حساب نسبة الكسب المعدل للاكاك.

والتنتائج كما هو موضح في جدول (14):

جدول (14): نسبة الكسب المعدل للاكاك لاختلاف الجوانب المعرفية لمهارات استخدام البرمجيات الديناميكية

<table>
<thead>
<tr>
<th>الدلالة</th>
<th>نسبة الكسب المعدل في الاختبار</th>
<th>متوسط القيمة بعد الاختبار</th>
<th>المعرفة بالبرمائيات الديناميكية</th>
<th>استخدام برنامج GeoGebra</th>
<th>استخدام برنامج G.S. P</th>
<th>الاختبار ككل</th>
</tr>
</thead>
<tbody>
<tr>
<td>كبيرة</td>
<td>1.2</td>
<td>10</td>
<td>9.84</td>
<td>3.7</td>
<td>GeoGebra</td>
<td>الاختبار ككل</td>
</tr>
<tr>
<td>كبيرة</td>
<td>2</td>
<td>43</td>
<td>40.74</td>
<td>7.14</td>
<td>G.S. P</td>
<td>الاختبار ككل</td>
</tr>
<tr>
<td>مقبولة</td>
<td>1.1</td>
<td>55</td>
<td>51.06</td>
<td>6.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>كبيرة</td>
<td>1.4</td>
<td>108</td>
<td>101.64</td>
<td>17.32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

يوضح من جدول (14) أن نسبة الكسب المعدل للبرنامج تنحصر بين (1.3، 2.6) وبالتالي فإن البرنامج المقترح فعال بدرجة كبيرة في تنمية الجوانب المعرفية لمهارات استخدام البرمجيات الديناميكية لدى طلاب مجموعة البحث، وفقاً لمعايير نسبة الكسب المعدل للاكاك (مصطفي محمد هريدي، 2017، 2013، 373).

(3): تم وضع مستوى التمكن (80%) بناءً على دراسة حماد حسن بدوي (2017)
مناقشة نتائج السؤال الثالث والفرص الأول من فروض البحث:

توجهت نتيجة البحث إلى أن البرنامج المقترح القائم على متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية أدى إلى تنمية الجوانب المعرفية لمهارات استخدام البرامج الديناميكية ككل ومهاراتها الفرعية لدى الطلاب معملي الرياضيات.

وقد تعود هذه النتيجة إلى:

1- مما تضمنه البرنامج من معلومات ومعارف حول برمجيات الرياضيات الديناميكية، واستخداماتها في تعليم الرياضيات وتعلمها.

2- حداثة موضوعات البرنامج المقترح ومواكبتها لمتطلبات تدريس الرياضيات في العصر الرقمي، وشعور الطلاب بأهمية تلك الموضوعات لهم؛ مما دفعهم إلى تحسين الجوانب المعرفية المتضمنة بها، وانعكس ذلك على تنمية تحصيلهم المعرفي.

3- شعور الطلاب بفائدة برمجيات الرياضيات الديناميكية (برامج GeoGebra، GSP)، وأنه يمكن استخدامها في تدريس مناهج الرياضيات في العديد من المراحل الدراسية، وأن لهم تطبيقات متعددة في مناهج الرياضيات المطورة؛ دفعهم إلى تحسين الجوانب المعرفية المتضمنة بها، وانعكس ذلك على تنمية تحصيلهم المعرفي.

4- أداء الطلاب للاختبارات الإلكترونية عقب كل موضوع، والتغذية الرافعة الفورية المقدمة لهم، مما ساعد الطلاب مجموعة البحث على تحقيق أنفسهم، وتشخيص نقاط الضعف لديهم، ومعالجتها أولًا بآول، مما أدى بدوره إلى تحقيق درجات مرتفعة في القياس البعدى لاختبارات التحصيل المعرفي.

101
5- تتوزع الأنشطة المتضمنة داخل البرنامج، ساعد الطلاب معلمي الرياضيات على اكتساب جوانب التعلم المختلفة؛ ومن ثم زيادة الفهم لمحتوى موضوعات البرنامج، مما انعكس على تحصيلهم.

6- تنواع مصادر التعلم للبرنامج المتعرف من مواقع الكترونية، وفيديوهات تعليمية مسجلة، ساعد الطلاب معلمي الرياضيات على الاستفادة منها، واللجوء إليها لفهم ما قد يصعب عليهم.

7- بيئة التعلم المستخدمة في تدريس البرنامج: حيث تكونت بيئة التعلم من جزئين أساسيين، وهما:

- بيئة التعلم وجهاً لوجه: وتميزت بأنها غنية بالعديد من المثيرات مثل استخدام داتا شرو، العروض العملية، التطبيقات على أجهزة الكمبيوتر، شبكة الإنترنت؛ مما أدى إلى كسر الروتين المعتاد في عملية التدريس، كما أثارت بيئة التعلم الفرصة للحوار والمناقشة ومشاركة الآراء.

- بيئة التعلم المتمدة على تطبيقات الويب التشاركية مثل ساعدت في التواصل بين الطلاب معلمي الرياضيات مع بعضهم البعض ومع الباحث خارج أوقات الدراسة المنتظمة، وتتبادل التفاعلات وال💡حذية الراجعة، مما ساعدهم في دراسة موضوعات البرنامج وفقا لسرعتهم، والتقدم في تعلمهم في ضوء إمكانياتهم وقدراتهم؛ مما أتاح الفرصة للطلاب من التمكن من أوجه التعلم بالبرنامج المقترح، ويوضح شكل (1) نموذج من تفاعل الطلاب أثناء تعلم بعض دروس البرنامج المقترح.

شكل (1): نموذج من تفاعل الطلاب المعلمين أثناء تعلم دروس البرنامج المقترح

ثانياً: النتائج المتعلقة بإجابة السؤال الرابع والفرض الثاني من فروض البحث:

ينص السؤال الرابع على: "ما فاعلية البرنامج المقترح القائم على متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية في تنمية الجوانب الأدائية لمهارات استخدام البرمجيات الديناميكية لدى الطلاب المعلمين بكلية التربية؟"
ولايجابة ذلك السؤال صيغ الفرض الاتي: " يوجد فرق دال إحصائيا عند مستوى (0.01) بين متوسطي درجات طلاب مجموعة البحث في التطبيقين القديم والبعدي لبطاقة ملاحظة الجوانب الأدائية لمهارات استخدام البرمجيات الديناميكية لصالح الطلاب في التطبيق الاعتيدي "، واختيار صحة هذا الفرض تم معالجة الإحصائية Paired Samples t-test باستخدام البرنامج الإحصائي SPSS.

جدول (15): نتائج اختبار t-test وحجم التأثير لدالة الفروق بين الرياضيات البيولي والبعدي لبطاقة الملاحظة الجوانب الأدائية لمهارات استخدام البرمجيات الديناميكية

<table>
<thead>
<tr>
<th>حجم التأثير</th>
<th>η²</th>
<th>مستوى الدلالة</th>
<th>قيمة t</th>
<th>الاحرف المعياري</th>
<th>بعد التطبيق المعدل المعياري</th>
<th>بعدة تعمير برنامجه</th>
<th>عدد فريق</th>
<th>الفروض</th>
<th>برنامجه</th>
</tr>
</thead>
<tbody>
<tr>
<td>كبير</td>
<td>0.99</td>
<td>دالة عند 0.01</td>
<td>60.5</td>
<td>1.68</td>
<td>3.02</td>
<td>50</td>
<td>GeoGebra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>كبير</td>
<td>0.98</td>
<td>دالة عند 0.01</td>
<td>54.2</td>
<td>1.61</td>
<td>2.10</td>
<td>50</td>
<td>G.S. P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>كبير</td>
<td>0.99</td>
<td>دالة عند 0.01</td>
<td>66.4</td>
<td>2.94</td>
<td>5.12</td>
<td>50</td>
<td>برنامجه ككل</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

يتضح من جدول (15) وجود فروق ذات دلالة إحصائية بين متوسطات درجات الطلاب معملي الرياضيات مجموعة البحث في التطبيقين القديم والبعدي لبطاقة ملاحظة الجوانب الأدائية لمهارات استخدام البرمجيات الديناميكية ككل وأبعدها الفرعية لصالح التطبيق الاعتيدي، وبناء على ذلك تم قبول الفرض الثاني من فرض البحث، وهذا يعني أن البرنامج المقترح القائم على متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التثائراية ساعد الطلاب المعلمين على تنمية الجوانب الأدائية لمهارات استخدام البرمجيات الديناميكية.

كما يتضح من جدول (15) أن قيم مربع أيضا (η²) لحجم التأثير لبطاقة الملاحظة ككل ومهاراتها الفرعية أكبر من (0.414)، مما يدل على وجود أثر كبير وفعال للبرنامج المقترح في تنمية الجوانب الأدائية لمهارات استخدام البرمجيات الديناميكية وفقاً لمعايير كوينس لحجم الأثر (عزت عبد الحميد حسن، 2011)، حيث أظهر البرنامج المقترح في تنمية الجوانب الأدائية لاستخدام برنامجي جيوبرازم GSP، وبرنامجه الراسب الهنبدي (GSP) بنسبة 98%، وبرنامجه الراسب الهنبدي (GeoGebra) بنسبة 99%.

واللتحقيق من وصول الطلاب لمستوى الممكن في الجوانب الأدائية لمهارات استخدام one-sample t-test برامجيات الرياضيات الديناميكية تم استخدام اختبار للمقارنة بين متوسط درجات أفراد مجموعة البحث في التطبيق الاعتيدي لبطاقة الملاحظة وقيمة مستوى الممكن (0.80)، وكانت النتائج كما في جدول (16):
جدول (16): نتائج اختبار t-test للفرق بين متوسط درجات مجموعة البحث والمتوسط الفرضي في القياس البعدي لبطاقة ملاحظة الجوائب الأدائية لمهارات استخدام البرمجيات الديناميكية

<table>
<thead>
<tr>
<th>Sig</th>
<th>الاتجاه المتغير الموسع النهاية (80%)</th>
<th>بعد</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>8.95</td>
<td>12.02</td>
</tr>
<tr>
<td>0.00</td>
<td>6.94</td>
<td>12.57</td>
</tr>
<tr>
<td>0.00</td>
<td>9.34</td>
<td>20.88</td>
</tr>
</tbody>
</table>

يوضح من جدول (16) وجود فروق ذات دلالة إحصائية عند مستوى (0.01) بين المتوسطات الحسابية لدرجات مجموعة البحث على بطاقة ملاحظة الجوائب الأدائية لمهارات استخدام البرمجيات الديناميكية ككل وأبعادها الفرعية، وبين المتوسط الفرضي (98%) من جهة أخرى، وكانت جميع هذه الفروق لصالح أفراد مجموعة البحث، مما يدل على أن البرنامج المقترح ساعد الطلاب على الوصول إلى التمكن في الجوائب الأدائية المرتبطة بمهارات استخدام برنامج GeoGebra، GSP.

وفيما يلي مزيد من التفاصيل حول أداء الطلاب في كل مهارة من مهارات استخدام البرمجيات الديناميكية GeoGebra جدول (17-أ): نتائج اختبار "ت" وحجم التأثير لمهارات استخدام برنامج GeoGebra

<table>
<thead>
<tr>
<th>الماهرة</th>
<th>التطبيق</th>
<th>عدد</th>
<th>المتوسط</th>
<th>الاتجاه المتغير الموسع النهاية (80%)</th>
<th>حالة عند</th>
</tr>
</thead>
<tbody>
<tr>
<td>المهارات الأساسية</td>
<td>قبلي</td>
<td>50</td>
<td>1.90</td>
<td>1.71</td>
<td>90.1</td>
</tr>
<tr>
<td>المهارات الهندسية</td>
<td>قبلي</td>
<td>50</td>
<td>2.05</td>
<td>2.03</td>
<td>81.4</td>
</tr>
<tr>
<td>مهارات القياس</td>
<td>قبلي</td>
<td>50</td>
<td>0.52</td>
<td>0.93</td>
<td>0.01</td>
</tr>
<tr>
<td>تطبيقات رياضية</td>
<td>بعدي</td>
<td>50</td>
<td>3.68</td>
<td>46.28</td>
<td>0.01</td>
</tr>
<tr>
<td>استناد اثاث</td>
<td>بعدي</td>
<td>50</td>
<td>0.30</td>
<td>0.46</td>
<td>42.5</td>
</tr>
<tr>
<td>إنشاءات الهندسية</td>
<td>بعدي</td>
<td>50</td>
<td>2.14</td>
<td>9.80</td>
<td>0.01</td>
</tr>
<tr>
<td>تطبيقات القياس</td>
<td>قبلي</td>
<td>50</td>
<td>9.74</td>
<td>27.94</td>
<td>0.01</td>
</tr>
<tr>
<td>تطبيقات الهندسية</td>
<td>بعدي</td>
<td>50</td>
<td>27.94</td>
<td>9.80</td>
<td>0.01</td>
</tr>
<tr>
<td>المهام الأساسية</td>
<td>قبلي</td>
<td>50</td>
<td>27.94</td>
<td>9.80</td>
<td>0.01</td>
</tr>
<tr>
<td>المهام الهندسية</td>
<td>بعدي</td>
<td>50</td>
<td>2.14</td>
<td>9.80</td>
<td>0.01</td>
</tr>
<tr>
<td>مهارات القياس</td>
<td>قبلي</td>
<td>50</td>
<td>3.68</td>
<td>46.28</td>
<td>0.01</td>
</tr>
<tr>
<td>تطبيقات رياضية</td>
<td>بعدي</td>
<td>50</td>
<td>9.74</td>
<td>27.94</td>
<td>0.01</td>
</tr>
</tbody>
</table>
جدول (17-ب) نتائج اختبار "ت" وحجم التأثير لمهارات استخدام برنامج GeoGebra

<table>
<thead>
<tr>
<th>حجم التأثير</th>
<th>المتوسط الدلالة</th>
<th>قيمتي الاحتراف المعيار</th>
<th>القيمة t</th>
<th>الخطأ المعياري</th>
<th>توقيع p</th>
<th>المهمة</th>
<th>الهدف</th>
<th>الوظيفة</th>
<th>الملاحظة</th>
</tr>
</thead>
<tbody>
<tr>
<td>كبير</td>
<td>0.95</td>
<td>42.5</td>
<td>0.46</td>
<td>1.41</td>
<td>0.01</td>
<td>تطبيقات رياضية</td>
<td>بديل</td>
<td>قليل</td>
<td>GSP</td>
</tr>
<tr>
<td>كبير</td>
<td>0.97</td>
<td>40.2</td>
<td>4.62</td>
<td>28.12</td>
<td>0.01</td>
<td>مهارات القلص</td>
<td>بديل</td>
<td>قليل</td>
<td>GeoGebra</td>
</tr>
<tr>
<td>كبير</td>
<td>0.97</td>
<td>42.5</td>
<td>0.46</td>
<td>9.80</td>
<td>0.01</td>
<td>مهارات القلص</td>
<td>بديل</td>
<td>قليل</td>
<td>GSP</td>
</tr>
<tr>
<td>كبير</td>
<td>0.96</td>
<td>33.8</td>
<td>8.99</td>
<td>43.24</td>
<td>0.01</td>
<td>تطبيقات رياضية</td>
<td>بديل</td>
<td>قليل</td>
<td>GeoGebra</td>
</tr>
</tbody>
</table>

يتضح من جدول (17) وجود فروق ذات دلالة إحصائية بين متوسطات درجات الطلاب معلمي الرياضيات مجموعة البحث في التطبيقين القييلي والبديل لكل مهارة لبطاقة الملاحظة لصالح GeoGebra و GSP من مهارات استخدام برنامجي التطبيق القييلي، كما يتضح من جدول (17) أن قيمة مربع إيتا (η^2) لحجم التأثير في كل مهارة من مهارات بطاقة الملاحظة أكبر من (0.1) وبالتالي فإن البرنامج المقترح له حجم أثر كبير في تنمية الجوانب الأدائية لمهارات استخدام البرمجيات الديناميكية لدى طلاب مجموعات البحث.

وتحقيقًا من فاعلية البرنامج في تنمية الجوانب الأدائية لمهارات استخدام برامج الرياضيات التفاعلية، تم حساب نسبة الكسب المعدل لبلوک، وكانت النتائج كما هو موضح في جدول (18).

جدول (18): نسبة الكسب المعدل لبلوک لبطاقة ملاحظة مهارات البرمجيات الديناميكية

<table>
<thead>
<tr>
<th>مجموعة العلاقة</th>
<th>متوسط القيمي بعد استخدام برنامج GeoGebra</th>
<th>متوسط القيمي بعد استخدام برنامج G.S.P</th>
</tr>
</thead>
<tbody>
<tr>
<td>كبيرة</td>
<td>115.72</td>
<td>109.14</td>
</tr>
<tr>
<td>كبيرة</td>
<td>224.86</td>
<td>226.44</td>
</tr>
<tr>
<td>كبيرة</td>
<td>8.48</td>
<td>7.46</td>
</tr>
<tr>
<td>الباطنة كل</td>
<td>31.88</td>
<td>33.88</td>
</tr>
</tbody>
</table>

يتضح من جدول (18) أن نسبة الكسب المعدل للبرنامج المقترح أكبر من 0.1، وبالتالي فإن البرنامج المقترح فعال بدرجة كبيرة في تنمية الجوانب الأدائية لمهارات استخدام البرمجيات الديناميكية لدى طلاب مجموعة البحث، وفقًا لمعايير نسبة الكسب المعدل لبلوک (مصطفى محمد هريدي، 2017، 2018، 373).

مناقشة نتائج السؤال الرابع والفرض الثاني من فروض البحث:

توصلت نتيجة البحث إلى أن البرنامج المقترح القائم على متطلبات تدريس الرياضيات في الصراع الرقمي باستخدام تطبيقات الويب التشاركية أدى إلى تنمية الجوانب الأدائية لمهارات استخدام البرمجيات الديناميكية ككل ومهارتها الفرعية لدى الطلاب معلمي الرياضيات.

وقد تعود هذه النتيجة إلى:

1. ما تضمنه البرنامج المقترح من أنشطة وتطبيقات حول الجوانب الأدائية لمهمات استخدام البرمجيات الديناميكية لم يكن الطلاب على دراية بها من قبل، مما دفعهم ذلك إلى دراستها وتحقيق مستوى مرتفع في القياس البديع لبيئة ملاحظة الأداء العملي لتك المهن.

2. تقسيم الجوانب الأدائية لمهمات استخدام البرمجيات الديناميكية إلى أداءات فرعية متسلسلة، ساعد على تعلمها وإتقانها، مما ساهم في نمو أداء طالب مجموعة البحث لمهمات استخدام البرمجيات الهندسية الديناميكية.

3. ربط الجوانب الأدائية لمهمات استخدام البرمجيات الديناميكية بالتعليمات والمهارات المتضمنة في كتب الرياضيات المدرسية، مما أدى شعور الطلاب بفائدة البرمجيات الديناميكية (برنامج GSP، GeoGebra) وزيادة دفاعهم لتعلم الجوانب الأدائية.

4. تنوع أساليب تنفيذ البرنامج وأنشطته ما بين التدريب بالنمذجة أو التقليد، والتدريبات الذاتية، والتدريب في مجموعات، كل ذلك كان له أثر في تنمية مهارات الطلاب.

5. البرنامج قائم على العرض النظري والتطبيق العملي، مما سهل على الطلاب ممارسة المهارات بشكل متكامل بشفافة النظرية والتطبيقي العملي.

6. عرض الجوانب الأدائية لمهمات استخدام البرمجيات الديناميكية بصورة عملية أمام الطلاب في بيئة التعلم ووجهاً لوجه داخل العمل؛ ساهم في تنمية مهاراتهم العملية، وتحقيق مستوى مرتفع في التطبيق البديع لبيئة ملاحظة الأداء العملي لتلك المهارات.

7. اتاحة الفرصة للطلاب للتطبيق العملي المباشر للجوانب الأدائية لمهمات استخدام البرمجيات الديناميكية على الأجهزة داخل العمل بأنفسهم، وتجهيزهم وإرشادهم وتصحيح أخطائه؛ مما ساهم في تنمية الجوانب الأدائية، زيادة المعرفة ووصول الطلاب إلى مستوى الاتفاق.

8. ما تضمنته أسلوب التقييم من أنشطة تطبيقية لتنفيذ العديد من التطبيقات والأنشطة باستخدام البرمجيات الديناميكية كان له دور في تنمية الجوانب الأدائية لدى الطلاب المعلمين.
10- ساعدت تطبيقات الويب التشاركية في بناء المعرفة بشكل تشاركي والحصول على الدعم من الطلاب وبعضهم البعض، أو من المعلم، ويوضح شكل (2) نموذج من الدعم المقدم للطلاب لبعضهم البعض ومن المعلم أثناء تعلم بعض دروس البرنامج المقترح.

شكل (2): نموذج من الدعم المقدم للطلاب أثناء تعلم دروس البرنامج المقترح

11- أتاحت تطبيقات الويب التشاركية منصة لمشاركة الطلاب لأنشطة التي يقوموا بها، مما أتاح الفرصة لبقية الطلاب للاستفادة منها في تنفيذ الجوانب الأدائية لمهارات استخدام البرمجيات الديناميكية.

ثالثاً: النتائج المتعلقة بإجابة السؤال الخامس والفقرة الثالث من فرض البحث:

ينص السؤال الخامس على: "ما فاعلية البرنامج المقترح القائم على متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية في تنمية المعتقدات التكنولوجية لدى الطلاب المعلمين بكلية التربية؟" ولإجابة ذلك السؤال ص병 الفرض الآتي: "يوجد فرق دال إحصائياً عند مستوى (0.01) بين متوسطي درجات طلاب مجموعة البحث في التطبيقين القبلي والبعدي لمقياس المعتقدات التكنولوجية لصالح الطلاب في التطبيق البعدي"؛ ولل∄خبار صحة هذا الفرض تمت المعالجة الإحصائية باستخدام اختبار Paired Samples t-test، وذلك باستخدام
يتضح من جدول (19) وجود فروق ذات دلالات إحصائية بين متوسطات درجات الطلاب معلمي الرياضيات لمجموعة البحث في التطبيقين القياسي والبعدي لمقياس المعقيادات التكنولوجية ككل وأبعاد الفرعية لصالح التطبيق القياسي. وبناءً على ذلك تم قبول الفرض الثالث من فروض البحث، وهذا يعني أن البرنامج المقترح القائم على متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية ساعد على تنمية المعقيادات التكنولوجية لدى الطلاب معلمي الرياضيات.

كما ينضح من جدول (19) أن قيم مربع إيتا (η^2) لحجم التأثير للمقياس ككل وأبعاد الفرعية أكبر من (0.1)، مما يدل على وجود أثر كبير وفعال للبرنامج المقترح القائم على متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية في تنمية المعقيادات التكنولوجية، وفقاً لمعايير كوهين لحجم الأثر (عزم عبد الحميد حسن، 2011، 2012، 2013).

واللificantly من فاعلية البرنامج في تنمية المعقيادات التكنولوجية، تم حساب نسبة الكسب المعدل للايلاك، وكانت النتائج كما هو موضح في جدول (20).
<table>
<thead>
<tr>
<th>الدالة</th>
<th>نوع الكسب</th>
<th>متوسط النهاية بعد التعلم العملي</th>
<th>متوسط النهاية بعد التعلم الفعلي</th>
<th>المعادلات حول...</th>
</tr>
</thead>
<tbody>
<tr>
<td>فعل بدرجة مقبولة</td>
<td>1.0</td>
<td>85</td>
<td>72.8</td>
<td>46.1</td>
</tr>
<tr>
<td>فعل بدرجة مقبولة</td>
<td>1.1</td>
<td>45</td>
<td>35.6</td>
<td>17.1</td>
</tr>
<tr>
<td>فعل بدرجة مقبولة</td>
<td>1.1</td>
<td>90</td>
<td>76.0</td>
<td>39.8</td>
</tr>
<tr>
<td>فعل بدرجة كبيرة</td>
<td>1.2</td>
<td>130</td>
<td>110.9</td>
<td>53.5</td>
</tr>
<tr>
<td>غير فعل</td>
<td>0.7</td>
<td>35</td>
<td>24.3</td>
<td>16.1</td>
</tr>
<tr>
<td>فعل بدرجة كبيرة</td>
<td>1.2</td>
<td>50</td>
<td>42.6</td>
<td>18.5</td>
</tr>
<tr>
<td>فعل بدرجة مقبولة</td>
<td>1.1</td>
<td>435</td>
<td>362.1</td>
<td>191.1</td>
</tr>
</tbody>
</table>

يتضح من جدول (20) أن نسبة الكسب المعدل للبرنامج المقترح في تنمية المعادلات التكنولوجية كلّ تتحصّر بين (1.0, 2.0)، وبالتالي فإن البرنامج المقترح فعال بدرجة مقبولة في تنمية المعادلات التكنولوجية لدى الطلاب مجموعة البحث، وفقاً لمعايير نسبية الكسب المعدل لبلاك (مصطفى محمد هربي، ٢٠٢٩)。

مناقشة نتائج السؤال الخامس والفروض الثالث من فوّض البحث:

توصلت نتيجة البحث إلى أن البرنامج المقترح القائم على متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية أدى إلى تنمية المعادلات التكنولوجية لدى الطلاب معيّم الرياضيات.

وتفق هذه النتائج مع نتائج العديد من الدراسات التي أهتمت بقياس المعادلات بشكل عام، والمعادلات التكنولوجية بشكل خاص، والدراسات التي اهتمت بالتحليل معيّمات المعادلات التكنولوجية والعوامل المؤثرة عليها، ومنها: دراسة هاشم رشاد محمد (٢٠٢٩) التي توصلت إلى فاعلية برنامج تدريبي قائم على تطبيقات الحوسبة الساحبة في تنمية المعادلات التكنولوجية لمعمل الرياضيات، وتوصلت دراسة بحثية (٢٠٢٩) (TPACK) فاعلية برنامج تدريبي مقترح قائم على نموذج Medicaid في تنمية المعادلات التكنولوجية المطلوبة في تدريس الرياضيات لدى الطلاب الممتنعين بكلية التربوية، وأظهرت دراسة ناصر محمد عبادة (٢٠٢٧) أن معيّمات معيّم الرياضيات نحو توظيف التكنولوجيا في تعليم الرياضيات وتعلمه جاءت بدرجة مرتفعة، ويرجع ذلك لتحول شكّل التعليم عن بعد بسبب جائحة كورونا، وأشارت نتائج دراسة ماهر الغانم (٢٠٢١) إلى فاعلية برنامج قائم على استخدام تطبيقات "جوجل إيرث" Google Earth في تنمية المعادلات نحو التحول الرقمي في تعليم الرياضيات، وتعلمه لدى الطلاب الممتنعين؛ وتوصلت دراسة حمود البرسعي Dynamic Computer و أنظمة الجبر المحوسية (DGS) Geometry Software في تنمية التفكير الجبري، لصالح الطلاب ذوي ausgeDFAS المعادلات المرفعة نحو بعّات DGS و CAS التفاعلية.
فقد تعود هذه النتيجة إلى:

1- ما تضمن البرنامج من مستحدثات تكنولوجيا، وكيفية توظيفها في تدريس الرياضيات كان له أثر في إحساس الطلاب بأهمية استخدام هذه الأدوات في تعليم الرياضيات وتعليمها.

2- اعتماد البرنامج على تطبيقات الويب التشاركية، كأدوات التكنولوجيا في تقديم موضوعات البرنامج للطلاب معلمي الرياضيات، الأمر الذي جذب انتباههم وزيادة وعيهم بالمستحدثات التكنولوجية.

3- وفر البرنامج المقترح العديد من التطبيقات التي تساعدهم على توظيف المستحدثات التكنولوجية في تعلم الرياضيات، مما ساهم في اكتساب الطلاب مجموعة البحث للمهارات التكنولوجية، والتعامل معها من خلال البرنامج، مما أدى إلى زيادة معتقداتهم التكنولوجية.

4- استفادة الطلاب من بعض المستحدثات التكنولوجية في تعلم موضوعات البرنامج، مثل: مشاركة مقاطع الفيديو، الشبكات الاجتماعية، المدونات التعليمية، وغيرها، كل ذلك كان له أثر كبير في زيادة قوة الإحساس بأهمية المستحدثات التكنولوجية في تعليم الرياضيات وتعليمها، ومن ثم أدى إلى تنمية المعتقدات التكنولوجية لديهم.

5- ارتباط موضوعات البرنامج المقترح بمتطلبات تدريس الرياضيات في العصر الرقمي، ومن أهم المستحدثات التكنولوجية، زاد من اتجاه الطلاب معلم الرياضيات نحو استخدامها في تعليم الرياضيات وتعليمها.

6- تتنوع الأنشطة المتضمنة في البرنامج كان لها تأثير في زيادة إدراك الطلاب لأهمية المستحدثات التكنولوجية في تعليم الرياضيات وتعليمها.

7- بنية التعلم بشقها التقليدي والإلكتروني، ووجو التألف والتعاون الذي ساعد بين الطلاب ومعلم الرياضيات أثناء دراسة البرنامج، والتواصل الإلكتروني المتزامن وغير المتزامن من خلال تطبيقات الويب التشاركية بين المتدربين بعضهم البعض وبين المعلم كان له أثر في تنمية المعتقدات التكنولوجية لديهم.

8- التركيز أثناء تقديم موضوعات البرنامج بشكل عام على إقلاع الطلاب بأهمية المستحدثات التكنولوجية في تدريس الرياضيات، وإظهار أمثلة تطبيقية من المناهج المدرسية، كان له أثر واضح في تنمية المعتقدات نحو استخدام المستحدثات التكنولوجية في تعليم وتعلم الرياضيات.

رابعاً: تحليل نتائج البحث كلياً:

تم تحليل النتائج كلياً بهدف الكشف عن مدى نجاح المعايرة التجريبيّة والتحقق مما أسفر عنه التحليل الكمي؛ وأظهرت نتائج التحليل الكمي الآتي:
نماذج إجابات الطلاب

<table>
<thead>
<tr>
<th>النشاط</th>
<th>إجابة الطالب الأول:</th>
<th>إجابة الطالب الثاني:</th>
<th>إجابة الطالب الثالث:</th>
<th>إجابة الطالب الرابع:</th>
</tr>
</thead>
</table>

بعض أنشطة برنامج GSP

- حرص الطلاب مجموعة البحث على إجابة الأسئلة والتغليفات المتضمنة بالبرنامج، ومشاركتها عبر مجموعة المقرر على موقع الفيسبوك، ويوضح

- جدول (21) نماذج من إجابات الطلاب لبعض أنشطة البرنامج

- جدول (22): نماذج من إجابات الطلاب لأنشطة البرنامج المفترض

- https://bit.ly/44mwiOg
- https://forms.gle/FtttJL4oKjiD1Wq5
- /https://dynamicmathamir2023.blogspot.com
- /https://maha2badry.blogspot.com
- /https://manarmohsen2023.blogspot.com
بعض أنشطة برنامج جيوجبرا
2- لاحظ الباحث حرص بعض الطلاب على تحقيق مستويات إنجاز مرتفعة في الاختبارات التكوينية لدروس البرنامج. فقد لاحظ الباحث أن الطالب حين يخطئ في إجابة بعض المفردات يقوم بالدخول مرة أخرى حتى يصل للإجابة الصحيحة. ويوضح جدول (2) إجابة بعض من أحد الاختبارات التكوينية لأحد دروس البرنامج:

جدول (2): نموذج من نتيجة بعض الطلاب على الاختبارات التكوينية

<table>
<thead>
<tr>
<th>الاسم</th>
<th>مهارات شريط الادوات في برنامج الراسم الهندسي</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>درجة المحاولة 3</td>
</tr>
<tr>
<td>طالب 1</td>
<td>93%</td>
</tr>
<tr>
<td>طالب 2</td>
<td>100%</td>
</tr>
<tr>
<td>طالب 3</td>
<td>100%</td>
</tr>
</tbody>
</table>

المجلة تربويات الرياضيات - المجلد (26) العدد (5) - يوليو 2003 م الجزء الثاني
تتبع حالات بعض الطلاب أثناء فترة تدريس البرنامج: تم تتبع تقدم بعض الطلاب أثناء دراسة البرنامج، ويوضح شكل (3) نتائج التقييم التكويني لخمسة من الطلاب لبعض موضوعات البرنامج.

شكل (3): نتائج التقييم التكويني لبعض موضوعات البرنامج.

- يتضح من شكل (3) تحسن أداء الطلاب أثناء دراسة موضوعات البرنامج، وإصرارهم على تحصين أدائهم في الاختبارات التكوينية لموضوعات البرنامج المقررة.

- تم جمع أراء الطلاب معلمى الرياضيات حول البرنامج بعد الانتهاء من تدريسه، ويوضح جدول (13) ملخص أراء الطلاب حول البرنامج المقررة.

<table>
<thead>
<tr>
<th>العبارة</th>
<th>موافق</th>
<th>موافق</th>
<th>موافق</th>
<th>موافق</th>
<th>موافق</th>
<th>موافق</th>
<th>موافق</th>
</tr>
</thead>
<tbody>
<tr>
<td>غير موافق</td>
<td>تماماً</td>
<td>تماماً</td>
<td>تماماً</td>
<td>تماماً</td>
<td>تماماً</td>
<td>تماماً</td>
<td>تماماً</td>
</tr>
<tr>
<td>1- زودني البرنامج بالمركرة المفيدة والفهم المعمقة لـ نتائج تدريس الرياضيات في العصر الرقمي</td>
<td>45%</td>
<td>36%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>2- أكمني البرنامج بعض المهارات المهنية والعملية التي تفيده في تدريس الرياضيات</td>
<td>65%</td>
<td>35%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>3- سوف يساعدني البرنامج في تحقيق النجاح في تدريس الرياضيات بشكل أفضل</td>
<td>65%</td>
<td>35%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>4- يوفر البرنامج أمثلة عملية وتطبيقات حياتية</td>
<td>65%</td>
<td>35%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>5- سأكون قادرًاً على تطبيق المعرفة المكتسبة في البرنامج</td>
<td>65%</td>
<td>35%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>6- تم تنظيم محتوى البرنامج بصورة تحقق التعليم بشكل أفضل</td>
<td>65%</td>
<td>35%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>7- المادة العلمية للبرنامج كانت كافية كما ونوعاً</td>
<td>65%</td>
<td>35%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>
8. هذا البرنامج مهم ويب تدريسه لجميع المتخصصين في الرياضيات.
9. درجة التخصص التي قدمت بها موضوعات البرنامج تناسب مع المستوى العلمي والعرفي لي.
10. تعاملت بسهولة مع بيئة التعلم الإلكتروني (المنادب) جروب الفيسوك + جروب الواسطات، أب قناة اليوتيوب، التي بر ارتج المقرر بها.
11. ساعدت قنات التعلم الإلكتروني (المنادب) جروب الفيسوك + جروب الواسطات، أب قناة اليوتيوب على التفاضل والتجاوز بينك وبين الطلاب بالتدريب وبين زملائك حول موضوعات المنهج.
12. ساعدت بيئة التعلم الإلكتروني (المنادب) جروب الفيسوك، جروب الواسطات، أب قناة اليوتيوب على تحقيق تعلم فعال لوضاعات المقرر.
13. أتاح كل بيئة التعلم الإلكتروني (المنادب) جروب الفيسوك، جروب الواسطات، أب قناة اليوتيوب، المناجمة الشخصية للمعرفة المكتسبة في المنهج.

ما الذي أعجبك بشكل كبير في هذا البرنامج؟

طالب 1: تطبيقات جديدة أول مرة تعلمها وتنفيذنا فيما بعد في التدريس، واني اكون مدرسة ناجحة وتطبيقات ظهوج عرفنا عنها أكثر، طالب 2: أعلم الكثير من المعلومات عن استخدام التكنولوجيا في التعليم، استخدمنا برامج وطبقنا عليها عملت، لم يكن لدى معرفة بهذه البرنامج، والانانا متمكن من هذه البرامج وأستطع تطويرها في تدريس الرياضيات الحديثة، طالب 3: أعجبني في البرنامج برنامج GeoGebra، GSP، وانشاء قناة اليوتيوب، والمنادب، حيث تساعدا في تدريس الرياضيات بصورة شيقة وممتعة، وتتوفر الوقت والجهد، وتساعد على التواصل بين المعلم والطلاب.

طقبر 4: أعجبني فكرة وجود اختيارات وفوهات متوفرة للمذاكرة والراجعية مرة أخرى، شرح الدكتور المتكرر بدون مل لنفس الموضوعات، أعجبني فكرة المدونة الموجودة بكل الدروس.

يتضح من جدول (32) إعجاب طلاب مجموعة البحث بمحتوى البرنامج، وطريقة التدريس المستخدمة.

يُتضح من نتائج التحليل الكمي، اتفاق نتائج التحليلين الكمي والكيمي، مما يؤكث فاعلية البرنامج المقترح القائم على متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية لتنمية مهارات استخدام البرمجيات الديناميكية والمتقدرات التكنولوجية لدى الطلاب المعنيين بكلية التربية.
つつوصيات البحث:
- تطوير برامج إعداد معلم الرياضيات في ضوء متطلبات تدريس الرياضيات في العصر الرقمي.
- تضمن مهارات استخدام برامج الرياضيات اليدوية، مثل برنامج GSP، في برامج إعداد معلم الرياضيات بكلية التربية.
- توفير دليل لمعلم الرياضيات مزود بفيدوهات تعليمية يوضح كيفية استخدام برامج الرياضيات اليدوية، وكيفية توظيفها في تدريس مناهج الرياضيات المدرسية.
- الاهتمام بالإعداد التكنولوجي لمعلم الرياضيات وتدريبهم على كيفية توظيف المستجدات التكنولوجية في تعلم الرياضيات، مثل: تطبيقات الويب التشاركية، برامج الرياضيات الديناميكية، وكيفية توظيفها في تدريس مناهج الرياضيات المدرسية.
- تدريب معلم وموهوب الرياضيات على مهارات استخدام برامج الرياضيات الديناميكية، مثل: برنامج GSP، وكيفية توظيفها في تدريس موضوع الرياضيات بمراحل التعليم المختلفة.
- تدريب معلم وموهوب الرياضيات على تطبيقات الويب التشاركية، وكيفية توظيفها، والاستفادة منها في تدريس الرياضيات بمراحل التعليم المختلفة.
- تنظيم محتوى كتب الرياضيات المدرسية بالمرحل الدراسية المختلفة بطريقة تساعد المعلمين على استخدام برامج الرياضيات الديناميكية في عملية التدريس.
- محاولة تعديل المعتقدات السلبية لدى معلم الرياضيات/ الطلاب معلم الرياضيات تجاهم المستجدات التكنولوجية في تدريس الرياضيات، والاهتمام بتنمية المعتقدات التكنولوجية الإيجابية نحو استخدام التكنولوجيا في التدريس.

بحث مقتترحة:
- العلاقة بين معتقدات معلم الرياضيات نحو استخدام التكنولوجيا وتنمية التفكير الرياضي لدى طلابهم.
- برنامج تدريبي مقتترح لتنمية كفاءات استخدام تطبيقات الويب التشاركية في تعلم الرياضيات وتعلمها لدى الطلاب المعمرين.
- فاعليّة برنامج تدريبي قائم على برامج الرياضيات الديناميكية في تنمية الممارسات التدريسية لدى الطلاب المعمرين شعبة الرياضيات بكليات التربية.
- فاعليّة استراتيجية تعليمية مقتترحة باستخدام برامج الرياضيات الديناميكية لتتميم التفكير البصري والتهور التكنولوجي لدى تلاميذ المرحلة الإعدادية.
القيمة التربوية لنتائج البحث:

في ضوء النتائج التي توصل إليها البحث، أمكن تحديد الفوائد الآتية:
الفوائد النظرية للبحث: قدم البحث تصورًا مقترحة لبرنامج قائم على متطلبات تدريس الرياضيات في العصر الرقمي باستخدام تطبيقات الويب التشاركية، يمكن الاستفادة من هذا البرنامج في تطوير برنامج معلم الرياضيات بكلية التربية، كما تعد مهارات استخدام برامج الرياضيات الديناميكية، والمعتقدات التكنولوجية من الموضوعات الحديثة في مجال تدريس الرياضيات، خاصة مع التطور التكنولوجي، واعتماد مناهج الرياضيات المطورة على المنصات التعليمية ووفق المعرفة.
الفوائد التطبيقية للبحث: يمكن الاستفادة عمليًا بتبني التصور للبرنامج المقترح في تطوير مقرر طرق تدريس الرياضيات بكلية التربية، مما يحقق هذا التصور من أمثلة نجاحات كورونا "كوفيد-19". حرص للبحث والدراسات، جامعة عمان الأهلية.

مراجع البحث

المراجع العربية

- أحمد جبر السعيد، زين العابدين شحاته خضراوي، طه علي أحمد، هاشم رشاد محمد (2022). برامج تدريبية قائم على متطلبات المواد التسائجلية للمعلم لتوظيف برنامج جيجيبرإ في تدريس الرياضيات وأثره على معتقداتهم التكنولوجية، والثقافة والتنمية، جامعة الثقافة من أجل التنمية، 360 - 375.
- أحمد صادق عبد المجيد (2007). برامج مقرحة في تدريس الرياضيات وفقًاً لنموذج رايانث وأثره في تنمية المعتقدات الرياضية والثقة في تعلم الرياضيات لدى طلاب
شيوعة التعليم الأساسي بكلية التربية بسوهاج، مجلة القراءة والمعرفة، جامعة عين شمس - كلية التربية - الجمعية المصرية للقرآن والمعرفة، 130 - 180.

أحمد هشام عبد العظيم، أحمد علي إبراهيم، شروق عودة إبراهيم. (2022). أثر استخدام برنامج "GeeGebra" على ترتيب مهارات التحويلات الهندسية لدى تلاميذ المرحلة الإعدادية، مجلة جامعة الفيوم للعلوم التربوية والنفسية، جامعة الفيوم، كلية التربية 12 (10)، 533 - 536.

إسحاق عبد الرؤف، أحمد، محمود فوزي أحمد. (2022). آليات تعزيز الاحتكاكات التربوية لأعضاء هيئة التدريس بجامعة المنوفية، في ضوء معطيات العمر الراقي حساب، مجلة كلية التربية، جامعة المنوفية، كلية التربية 37 (2)، 413 - 416.

أمور خالد، المقرش.

الجامعة الإسلامية، الأردن، 177 - 178.

أمانت محمد السيد، (2022). فاعلية استخدام الفصول الافتراضية المتزامنة مايكلروسفت Teams في تدريس مهارات الكتابة العلمية لطلاب كلية الصيدلة في أكشاف هذه المهارات والرضا عن التعلم لديهم. دراسات عربية في التربية والتعليم النفس، جامعة العربية، 243 - 246.

نهائي عبد الرحمن المزيني. (2021). معتقدات معلمات اللغة العربية نحو التكامل بين التعليم والرياضيات والممارسة "SMT" وعلاقة ذلك بعض المتغيرات. مجلة جامعة بيشة للعلوم الإنسانية والترفيهية، جامعة بيشة، السعودية، 6، 120-212.

ثريا حمود البوسعيدي. (2020). أثر الدمج بين بيئة TDGs وبيئة التفكير CAS في تعليم الرياضيات للبنين في المملكة العربية السعودية. مجلة التربية، جامعات عين شمس، كلية التربية، 2(4)، 151-152.

مجلة تربويات الرياضيات – المجلد (٢٦) العدد (٥) - يوليو ٢٠٢٣م الجزء الثاني

حمداً حسن بنو (٢٠١٧). فاعلية التعليم المدمج التشاركي القائم على ادوات الويب ٢٠٠ في تنمية مهارات استخدام البرمجيات الهندسية الديناميكية لدى طلاب شعبية الرياضيات، رسالة ماجستير، كلية التربية، جامعة الأزهر.

حمدي أحمد عبد العزيز (٢٠٢٥). تصميم استراتيجيات تدريبية قائمة على فنيات التدريب المعرفي وأثرها على تنمية مهارات تصميم التدريس الإلكتروني وتحسين المعتقدات التربوية نحو التعلم الإلكتروني لدى طلاب شعبة العلم التجاري بكليات التربية. دراسات تربوية وتنسية، جامعة الزقاق - كلية التربية، ٨٦ - ١٤. ٢٠٢٥.

دينا كمال الدين بومي. (٢٠٢٠). تقييم المعتقدات البداجوجية لمعلمي الابتدائية، جامعة عين شمس - كلية التربية - مركز تطوير التعليم الجامعي، ٢٣٠ - ١٤١.

زهير محمود أحمد (٢٠١٩). معلم العصر الرقمي: الطموحات والتحديات، المجلة التربوية، جامعة سوهاج - كلية التربية، ٢٨، ٣٠٠ - ٣١٤.

سامية حسين هلال (٢٠٢٠). فاعلية استراتيجيات تعليمية متعددة باستخدام برامج جيوجرافيا لتنمية البراعة الرياضية لدى تلاميذ الصف الثالث الإعدادي. مجلة تربويات الرياضيات، الجمعية المصرية لتربيت الرياضيات، ٣٣، ٩٣ - ١٣٨.

سامية حسن الحربى، عبد العزيز محمد الرويس. (٢٠٢٢). العلاقة بين المعتقدات المرتبطة بمبادئ الرياضيات المدرسية ومارسات التدريس الفعال للرياضيات لدى معلمات المرحلة الثانوية. مجلة تربويات الرياضيات، الجمعية المصرية لتربيت الرياضيات، ٣٤، ٣١٠ - ٣١٤.

Google Earth: بيرام قائم على استخدام تطبيقات جوجل إرث لتنمية مهارات التدريس الالكتروني والمعتقدات نحو التحول الرقمي في تعلم الرياضيات وتعليمها لدى الطلاب المتعلم. مجلة تربويات الرياضيات، الجمعية المصرية لتربيت الرياضيات، ٣٤، ٣٢٠ - ١٢٠.

سيد محمد شهاداً (٢٠١٥). فاعلية تدريس الهندسة التحليلية بالاستعانة برامج تفاعلية ديناميكية في فهم أسسيات المادة وتطبيقاتها لدى طلاب الصف الأول الثانوي. مجلة القراءة والمعرفة، جامعة عين شمس، كلية التربية، الجمعية المصرية للقراءة والمعرفة، ١٤٠, ١٤١ - ١٤٦.

سمير عبد العزيز الشهاب (٢٠١٩). أثر استخدام شبكات التواصل الاجتماعي على تنمية التحصيل والاحتفاظ بالتعلم وال التواصل الرياضي الإلكتروني لدى طلاب المرحلة المتوسطة بمدينة الرياض، مجلة التربية، جامعة الأزهر، كلية التربية، ١٩٢، ٣٣٠ - ٣٢٥.

سمية محمد فتحي، هبة زيد نصار، إبراهيم محمد رشوان. (٢٠٢١). فاعلية برنامج تدريبي لإكساب معلمي الرياضيات بالمرحلة الابتدائية بالكويت مهارات استخدام برمجية

السيد محمد مرعي (2020). فاعلية منصة إلكترونية قائمة على الوسائط المتعددة التفاعلية والوب تشاركي عبر الإنترنت في تنمية مهارات استخدام أجهزة العروض الضوئية لطلاب ثالثة تكنولوجيا التعليم بكلية التربية. مجلة التربية، جامعة الأزهر، التربوية، 188، 11-58.

شادي ميلاد غالي (2022). فاعلية برامج تدريبية مقتراح على استخدام البرمجيات الرياضية التفاعلية في تنمية الأداء التدريسي والكتابة الذاتية المهنية لدى الطلاب المتناسقين في كلية التربية، جامعة النصر، 1-82.

شرين السيد إبراهيم، وفاء محمود عبد الفتاح (2022). نمط حشد المصادر (الداخلي/ الخارجي) بين التدريب الإلكتروني وآرئها على تنمية مهارات التعلم الرقمي والذكاء العام لدى معلمي التعليم. تكنولوجيا التعليم، الجمعية المصرية للكتابة التعليمية، 179-182.

شيماء محمد حسن (2021). برنامج تدريبي مقتراح على الرياضيات الواقعية في تنمية التصور التكنولوجي الرياضي وتعديل معتقدات تدريس الرياضيات لدى الطلاب المتناسقين. مجلة تربويات الرياضيات، الجمعية المصرية لتدريب الرياضيات، (24)، 1-177.

عadel سعيد الصاعدي (2016). أثر استخدام برنامج "GSP" على التحصيل الدراسي لطلاب الصف الثالث المتوسط في الهندسة التحليلية واتجاههم نحو الرياضيات. مجلة التربية، جامعة الأزهر - كلية التربية، 382-384.

عابد محمد البلوي (2022). برامج تدريبية قانون على البرامج التفاعلية في تعلم الرياضيات، وتعليمها. رسالة دكتوراه، كلية التربية، جامعة أم القرى.

-- علاء المرسي أبو الرايات، أحمد علي إبراهيم (2020). فاعلية برنامج تدريبي مقترح قائم على برامج الهندسة التفاعلية في تنمية الاستيعاب المفاهيمي ومهارات التفكير التخطيطي لدى الطلاب المعلمين شعبة الرياضيات. العلوم التربوية، جامعة القاهرة - كلية الدراسات العليا التربوية، 28(1)، 59-147.

-- علاء المرسي أبو الرايات، سليمان النسفي (2019). فاعلية استخدام بعض تطبيقات الويب 6 في تنمية مهارات التفكير النقدي واتجاه الطلاب المعلمين نحو تدريس الرياضيات. مجلة كلية التربية، جامعة كفر الشيخ - كلية التربية، 19(1)، 621-622.

-- فايز محمد منصور (2020). أثر استخدام برنامج "GSP " Geometric Sketchpad "GSP" تدريس الهندسة لتنمية مهارات الحسم الهندسي ومهارات التفكير البصري لدى تلاميذ الصف السادس الإبتدائي. مجلة تربويات الرياضيات، الجمعية المصرية لتدريبات الرياضيات، 23(8)، 151-194.

 رسالة دكتوراه: كلية التربية، جامعة بنها.

ماهر إسماعيل صبري، أمينة سلمان الحكيم. (2016). فعالية استخدام المدونات الإلكترونية في تعلم القراءة على تنمية الخيال العلمي لدى طلاب المرحلة الثانوية. دراسات عربية في التربية وعلم النفس، رابطة التربويين العرب، 29، 39، 68.

محمد مثيري. (2022). فاعلية المدخل البصري القائم على برنامج GSP في علاج اضطرابات الإدراك البصري وخفض الفقق الرياضي لدى تلاميذ الحلقة الثانية من
مجلة تربيات الرياضيات - المجلد (26) العدد (5) - يوليو 2023م الجزء الثاني

التعليم الأساسي ذوي صعوبات تعلم الرياضيات. مجلة تربيات الرياضيات، الجمعية المصرية لتربيات الرياضيات، 2023، (26)، 90-152.

- ناعم محمد العمري (2014). أثر استخدام برنامج جيوجابرا - GeoGebra - في تعليم الرياضيات. 2014، (37) 149-152

مجلة تربويات الرياضيات – المجلد (26) العدد (5) - يوليو 2013

المجلة الأكاديمي

- ههيم عاطف حسن. (2014). تطبيقات الوب الويب التشاركية في التعليم. القاهرة: المركز الأكاديمي

- هويدي محمود سيد. (2010). برنامج تدريبي مقترح قائم على نموذج TPACK للمعهد التقني المتعدد في تدريس الرياضيات لدى الطلاب المبتدئين بكلية التربية. مجلة تربويات الرياضيات، الجمعية المصرية لتدريبات الرياضيات، 25(5) 196 - 244.

المراجع الإنجلزية:

- Saadati, F., Giaconi, V., Chandia, E., Fuenzalida, N., Rodríguez Donoso, M. J. E. J. o. m., science, & education, t. (2021). Beliefs and Practices about Remote Teaching Processes during the
Pandemic: A Study with Chilean Mathematics Teachers. 17(11).

